Lemma 86.9.2. Let $S$ be a scheme. Let $X \to Y$ be a proper, flat morphism of algebraic spaces which is of finite presentation. If $(\omega _{X/Y}^\bullet , \tau )$ is a relative dualizing complex, then $\mathcal{O}_ X \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\omega _{X/Y}^\bullet , \omega _{X/Y}^\bullet )$ is an isomorphism and $Rf_*\omega _{X/Y}^\bullet $ has vanishing cohomology sheaves in positive degrees.
Proof. It suffices to prove this after base change to an affine scheme étale over $Y$ in which case it follows from Lemma 86.8.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)