The Stacks project

Lemma 51.16.4. Let $A$ be a Noetherian local ring with normalized dualizing complex $\omega _ A^\bullet $. Let $I \subset A$ be an ideal. If $H^0_{V(I)}(\omega _ A^\bullet ) = 0$, then $\text{cd}(A, I) < \dim (A)$.

Proof. Set $d = \dim (A)$. Let $\mathfrak p_1, \ldots , \mathfrak p_ n \subset A$ be the minimal primes of dimension $d$. Recall that the finite $A$-module $H^{-i}(\omega _ A^\bullet )$ is nonzero only for $i \in \{ 0, \ldots , d\} $ and that the support of $H^{-i}(\omega _ A^\bullet )$ has dimension $\leq i$, see Lemma 51.9.4. Set $\omega _ A = H^{-d}(\omega _ A^\bullet )$. By prime avoidence (Algebra, Lemma 10.14.2) we can find $f \in A$, $f \not\in \mathfrak p_ i$ which annihilates $H^{-i}(\omega _ A^\bullet )$ for $i < d$. Consider the distinguished triangle

\[ \omega _ A[d] \to \omega _ A^\bullet \to \tau _{\geq -d + 1}\omega _ A^\bullet \to \omega _ A[d + 1] \]

See Derived Categories, Remark 13.12.4. By Derived Categories, Lemma 13.12.5 we see that $f^ d$ induces the zero endomorphism of $\tau _{\geq -d + 1}\omega _ A^\bullet $. Using the axioms of a triangulated category, we find a map

\[ \omega _ A^\bullet \to \omega _ A[d] \]

whose composition with $\omega _ A[d] \to \omega _ A^\bullet $ is multiplication by $f^ d$ on $\omega _ A[d]$. Thus we conclude that $f^ d$ annihilates $H^ d_{V(I)}(\omega _ A)$. By Lemma 51.16.3 we conlude $H^ d_{V(I)}(\omega _ A) = 0$. Then we conclude by Lemma 51.16.2 and the fact that $(\omega _ A)_{\mathfrak p_ i}$ is nonzero (see for example Dualizing Complexes, Lemma 47.16.11). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EB4. Beware of the difference between the letter 'O' and the digit '0'.