The Stacks project

Remark 31.12.9. Let $X$ be an integral locally Noetherian scheme. Thanks to Lemma 31.12.8 we know that the reflexive hull $\mathcal{F}^{**}$ of a coherent $\mathcal{O}_ X$-module is coherent reflexive. Consider the category $\mathcal{C}$ of coherent reflexive $\mathcal{O}_ X$-modules. Taking reflexive hulls gives a left adjoint to the inclusion functor $\mathcal{C} \to \textit{Coh}(\mathcal{O}_ X)$. Observe that $\mathcal{C}$ is an additive category with kernels and cokernels. Namely, given $\varphi : \mathcal{F} \to \mathcal{G}$ in $\mathcal{C}$, the usual kernel $\mathop{\mathrm{Ker}}(\varphi )$ is reflexive (Lemma 31.12.7) and the reflexive hull $\mathop{\mathrm{Coker}}(\varphi )^{**}$ of the usual cokernel is the cokernel in $\mathcal{C}$. Moreover $\mathcal{C}$ inherits a tensor product

\[ \mathcal{F} \otimes _\mathcal {C} \mathcal{G} = (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G})^{**} \]

which is associative and symmetric. There is an internal Hom in the sense that for any three objects $\mathcal{F}, \mathcal{G}, \mathcal{H}$ of $\mathcal{C}$ we have the identity

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {C}(\mathcal{F} \otimes _\mathcal {C} \mathcal{G}, \mathcal{H}) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {C}(\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{H})) \]

see Modules, Lemma 17.22.1. In $\mathcal{C}$ every object $\mathcal{F}$ has a dual object $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X)$. Without further conditions on $X$ it can happen that

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \not\cong \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \otimes _\mathcal {C} \mathcal{G} \quad \text{and}\quad \mathcal{F} \otimes _\mathcal {C} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \not\cong \mathcal{O}_ X \]

for $\mathcal{F}, \mathcal{G}$ of rank $1$ in $\mathcal{C}$. To make an example let $X = \mathop{\mathrm{Spec}}(R)$ where $R$ is as in More on Algebra, Example 15.23.17 and let $\mathcal{F}, \mathcal{G}$ be the modules corresponding to $M$. Computation omitted.


Comments (0)

There are also:

  • 2 comment(s) on Section 31.12: Reflexive modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EBH. Beware of the difference between the letter 'O' and the digit '0'.