Lemma 67.29.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $E \subset |Y|$ be a subset. If $E$ is étale locally constructible in $Y$, then $f^{-1}(E)$ is étale locally constructible in $X$.

**Proof.**
Choose a scheme $V$ and a surjective étale morphism $\varphi : V \to Y$. Choose a scheme $U$ and a surjective étale morphism $U \to V \times _ Y X$. Then $U \to X$ is surjective étale and the inverse image of $f^{-1}(E)$ in $U$ is the inverse image of $\varphi ^{-1}(E)$ by $U \to V$. Thus the lemma follows from the case of schemes for $U \to V$ (Morphisms, Lemma 29.22.1) and the definition (Properties of Spaces, Definition 66.8.2).
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)