Lemma 68.12.7. Let $S$ be a scheme. Let $X \to Y$ be a locally quasi-finite morphism of algebraic spaces over $S$. Then $\dim (X) \leq \dim (Y)$.
Lemma 68.12.7. Let $S$ be a scheme. Let $X \to Y$ be a locally quasi-finite morphism of algebraic spaces over $S$. Then $\dim (X) \leq \dim (Y)$.
Proof. This follows from Lemma 68.12.6 and Properties of Spaces, Lemma 66.10.3. $\square$
Comments (0)