The Stacks project

Lemma 15.94.7. Let $I$ be an ideal in a Noetherian ring $A$. Let ${}^\wedge $ denote derived completion with respect to $I$. Let $K \in D^-(A)$.

  1. If $M$ is a finite $A$-module, then $(K \otimes _ A^\mathbf {L} M)^\wedge = K^\wedge \otimes _ A^\mathbf {L} M$.

  2. If $L \in D(A)$ is pseudo-coherent, then $(K \otimes _ A^\mathbf {L} L)^\wedge = K^\wedge \otimes _ A^\mathbf {L} L$.

Proof. Let $L$ be as in (2). We may represent $K$ by a bounded above complex $P^\bullet $ of free $A$-modules. We may represent $L$ by a bounded above complex $F^\bullet $ of finite free $A$-modules. Since $\text{Tot}(P^\bullet \otimes _ A F^\bullet )$ represents $K \otimes _ A^\mathbf {L} L$ we see that $(K \otimes _ A^\mathbf {L} L)^\wedge $ is represented by

\[ \text{Tot}((P^\bullet )^\wedge \otimes _ A F^\bullet ) \]

where $(P^\bullet )^\wedge $ is the complex whose terms are the usual $=$ derived completions $(P^ n)^\wedge $, see for example Proposition 15.94.2 and Lemma 15.94.6. This proves (2). Part (1) is a special case of (2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EEV. Beware of the difference between the letter 'O' and the digit '0'.