The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.88.8. Let $M_1 \to M_2 \to M_3 \to 0$ be an exact sequence of $R$-modules. If $M_1$ is finitely generated and $M_2$ is Mittag-Leffler, then $M_3$ is Mittag-Leffler.

Proof. For any family $(Q_{\alpha })_{\alpha \in A}$ of $R$-modules, since tensor product is right exact, we have a commutative diagram

\[ \xymatrix{ M_1 \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r] \ar[d] & M_2 \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r] \ar[d] & M_3 \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r] \ar[d] & 0 \\ \prod _{\alpha }(M_1 \otimes Q_{\alpha }) \ar[r] & \prod _{\alpha }(M_2 \otimes Q_{\alpha }) \ar[r] & \prod _{\alpha }(M_3 \otimes Q_{\alpha })\ar[r] & 0 } \]

with exact rows. By Proposition 10.88.2 the left vertical arrow is surjective. By Proposition 10.88.5 the middle vertical arrow is injective. A diagram chase shows the right vertical arrow is injective. Hence $M_3$ is Mittag-Leffler by Proposition 10.88.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EGI. Beware of the difference between the letter 'O' and the digit '0'.