Lemma 28.18.2. Let $A$ be a ring and let $U \subset \mathop{\mathrm{Spec}}(A)$ be a quasi-compact open subscheme. For $\mathcal{F}$ quasi-coherent on $U$ the canonical map

is an isomorphism.

Lemma 28.18.2. Let $A$ be a ring and let $U \subset \mathop{\mathrm{Spec}}(A)$ be a quasi-compact open subscheme. For $\mathcal{F}$ quasi-coherent on $U$ the canonical map

\[ \widetilde{H^0(U, \mathcal{F})}|_ U \to \mathcal{F} \]

is an isomorphism.

**Proof.**
Denote $j : U \to \mathop{\mathrm{Spec}}(A)$ the inclusion morphism. Then $H^0(U, \mathcal{F}) = H^0(\mathop{\mathrm{Spec}}(A), j_*\mathcal{F})$ and $j_*\mathcal{F}$ is quasi-coherent by Schemes, Lemma 26.24.1. Hence $j_*\mathcal{F} = \widetilde{H^0(U, \mathcal{F})}$ by Schemes, Lemma 26.7.5. Restricting back to $U$ we get the lemma.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: