The Stacks project

Lemma 51.11.3. Let $A$ be a Noetherian ring which has a dualizing complex. Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module. Let $A', M'$ be the $I$-adic completions of $A, M$. Let $\mathfrak p' \subset \mathfrak q'$ be prime ideals of $A'$ with $\mathfrak q' \in V(IA')$ lying over $\mathfrak p \subset \mathfrak q$ in $A$. Then

\[ \text{depth}_{A_{\mathfrak p'}}(M'_{\mathfrak p'}) \geq \text{depth}_{A_\mathfrak p}(M_\mathfrak p) \]


\[ \text{depth}_{A_{\mathfrak p'}}(M'_{\mathfrak p'}) + \dim ((A'/\mathfrak p')_{\mathfrak q'}) = \text{depth}_{A_\mathfrak p}(M_\mathfrak p) + \dim ((A/\mathfrak p)_\mathfrak q) \]

Proof. We have

\[ \text{depth}(M'_{\mathfrak p'}) = \text{depth}(M_\mathfrak p) + \text{depth}(A'_{\mathfrak p'}/\mathfrak p A'_{\mathfrak p'}) \geq \text{depth}(M_\mathfrak p) \]

by flatness of $A \to A'$, see Algebra, Lemma 10.163.1. Since the fibres of $A \to A'$ are Cohen-Macaulay (Dualizing Complexes, Lemma 47.23.2 and More on Algebra, Section 15.51) we see that $\text{depth}(A'_{\mathfrak p'}/\mathfrak p A'_{\mathfrak p'}) = \dim (A'_{\mathfrak p'}/\mathfrak p A'_{\mathfrak p'})$. Thus we obtain

\begin{align*} \text{depth}(M'_{\mathfrak p'}) + \dim ((A'/\mathfrak p')_{\mathfrak q'}) & = \text{depth}(M_\mathfrak p) + \dim (A'_{\mathfrak p'}/\mathfrak p A'_{\mathfrak p'}) + \dim ((A'/\mathfrak p')_{\mathfrak q'}) \\ & = \text{depth}(M_\mathfrak p) + \dim ((A'/\mathfrak p A')_{\mathfrak q'}) \\ & = \text{depth}(M_\mathfrak p) + \dim ((A/\mathfrak p)_\mathfrak q) \end{align*}

Second equality because $A'$ is catenary and third equality by More on Algebra, Lemma 15.43.1 as $(A/\mathfrak p)_\mathfrak q$ and $(A'/\mathfrak p A')_{\mathfrak q'}$ have the same $I$-adic completions. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EHW. Beware of the difference between the letter 'O' and the digit '0'.