Lemma 51.15.5. Let X be a Noetherian scheme which locally has a dualizing complex. Let T' \subset T \subset X be subsets stable under specialization such that if x \leadsto x' is an immediate specialization of points in X and x' \in T', then x \in T. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Then there exists a unique map \mathcal{F} \to \mathcal{F}'' of coherent \mathcal{O}_ X-modules such that
\mathcal{F}_ x \to \mathcal{F}''_ x is an isomorphism for x \not\in T,
\mathcal{F}_ x \to \mathcal{F}''_ x is surjective and \text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}''_ x) \geq 1 for x \in T, x \not\in T', and
\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}''_ x) \geq 2 for x \in T'.
If f : Y \to X is a Cohen-Macaulay morphism with Y Noetherian, then f^*\mathcal{F} \to f^*\mathcal{F}'' satisfies the same properties with respect to f^{-1}(T') \subset f^{-1}(T) \subset Y.
Comments (0)