52.18 A distance function
Let Y be a Noetherian scheme and let Z \subset Y be a closed subset. We define a function
52.18.0.1
\begin{equation} \label{algebraization-equation-delta-Z} \delta ^ Y_ Z = \delta _ Z : Y \longrightarrow \mathbf{Z}_{\geq 0} \cup \{ \infty \} \end{equation}
which measures the “distance” of a point of Y from Z. For an informal discussion, please see Remark 52.18.3. Let y \in Y. We set \delta _ Z(y) = \infty if y is contained in a connected component of Y which does not meet Z. If y is contained in a connected component of Y which meets Z, then we can find k \geq 0 and a system
V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \supset V_ k \subset W_ k
of integral closed subschemes of Y such that V_0 \subset Z and y \in V_ k is the generic point. Set c_ i = \text{codim}(V_ i, W_ i) for i = 0, \ldots , k and b_ i = \text{codim}(V_{i + 1}, W_ i) for i = 0, \ldots , k - 1. For such a system we set
\delta (V_0, W_0, V_1, \ldots , W_ k) = k + \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1})
This is \geq k as we can take i = k and we have c_ k \geq 0. Finally, we set
\delta _ Z(y) = \min \delta (V_0, W_0, V_1, \ldots , W_ k)
where the minimum is over all systems of integral closed subschemes of Y as above.
Lemma 52.18.1. Let Y be a Noetherian scheme and let Z \subset Y be a closed subset.
For y \in Y we have \delta _ Z(y) = 0 \Leftrightarrow y \in Z.
The subsets \{ y \in Y \mid \delta _ Z(y) \leq k\} are stable under specialization.
For y \in Y and z \in \overline{\{ y\} } \cap Z we have \dim (\mathcal{O}_{\overline{\{ y\} }, z}) \geq \delta _ Z(y).
If \delta is a dimension function on Y, then \delta (y) \leq \delta _ Z(y) + \delta _{max} where \delta _{max} is the maximum value of \delta on Z.
If Y = \mathop{\mathrm{Spec}}(A) is the spectrum of a catenary Noetherian local ring with maximal ideal \mathfrak m and Z = \{ \mathfrak m\} , then \delta _ Z(y) = \dim (\overline{\{ y\} }).
Given a pattern of specializations
\xymatrix{ & y'_0 \ar@{~>}[ld] \ar@{~>}[rd] & & y'_1 \ar@{~>}[ld] & \ldots & y'_{k - 1} \ar@{~>}[rd] & \\ y_0 & & y_1 & & \ldots & & y_ k = y }
between points of Y with y_0 \in Z and y_ i' \leadsto y_ i an immediate specialization, then \delta _ Z(y_ k) \leq k.
If Y' \subset Y is an open subscheme, then \delta ^{Y'}_{Y' \cap Z}(y') \geq \delta ^ Y_ Z(y') for y' \in Y'.
Proof.
Part (1) is essentially true by definition. Namely, if y \in Z, then we can take k = 0 and V_0 = W_0 = \overline{\{ y\} }.
Proof of (2). Let y \leadsto y' be a nontrivial specialization and let V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k is a system for y. Here there are two cases. Case I: V_ k = W_ k, i.e., c_ k = 0. In this case we can set V'_ k = W'_ k = \overline{\{ y'\} }. An easy computation shows that \delta (V_0, W_0, \ldots , V'_ k, W'_ k) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k) because only b_{k - 1} is changed into a bigger integer. Case II: V_ k \not= W_ k, i.e., c_ k > 0. Observe that in this case \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) > 0. Hence if we set V'_{k + 1} = W_{k + 1} = \overline{\{ y'\} }, then although k is replaced by k + 1, the maximum now looks like
\max _{i = 0, 1, \ldots , k + 1} (c_ i + c_{i + 1} + \ldots + c_ k + c_{k + 1} - b_ i - b_{i + 1} - \ldots - b_{k - 1} - b_ k)
with c_{k + 1} = 0 and b_ k = \text{codim}(V_{k + 1}, W_ k) > 0. This is strictly smaller than \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) and hence \delta (V_0, W_0, \ldots , V'_{k + 1}, W'_{k + 1}) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k) as desired.
Proof of (3). Given y \in Y and z \in \overline{\{ y\} } \cap Z we get the system
V_0 = \overline{\{ z\} } \subset W_0 = \overline{\{ y\} }
and c_0 = \text{codim}(V_0, W_0) = \dim (\mathcal{O}_{\overline{\{ y\} }, z}) by Properties, Lemma 28.10.3. Thus we see that \delta (V_0, W_0) = 0 + c_0 = c_0 which proves what we want.
Proof of (4). Let \delta be a dimension function on Y. Let V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k be a system for y. Let y'_ i \in W_ i and y_ i \in V_ i be the generic points, so y_0 \in Z and y_ k = y. Then we see that
\delta (y_ i) - \delta (y_{i - 1}) = \delta (y'_{i - 1}) - \delta (y_{i - 1}) - \delta (y'_{i - 1}) + \delta (y_ i) = c_{i - 1} - b_{i - 1}
Finally, we have \delta (y'_ k) - \delta (y_{k - 1}) = c_ k. Thus we see that
\delta (y) - \delta (y_0) = c_0 + \ldots + c_ k - b_0 - \ldots - b_{k - 1}
We conclude \delta (V_0, W_0, \ldots , W_ k) \geq k + \delta (y) - \delta (y_0) which proves what we want.
Proof of (5). The function \delta (y) = \dim (\overline{\{ y\} }) is a dimension function. Hence \delta (y) \leq \delta _ Z(y) by part (4). By part (3) we have \delta _ Z(y) \leq \delta (y) and we are done.
Proof of (6). Given such a sequence of points, we may assume all the specializations y'_ i \leadsto y_{i + 1} are nontrivial (otherwise we can shorten the chain of specializations). Then we set V_ i = \overline{\{ y_ i\} } and W_ i = \overline{\{ y'_ i\} } and we compute \delta (V_0, W_1, V_1, \ldots , W_{k - 1}) = k because all the codimensions c_ i of V_ i \subset W_ i are 1 and all b_ i > 0. This implies \delta _ Z(y'_{k - 1}) \leq k as y'_{k - 1} is the generic point of W_ k. Then \delta _ Z(y) \leq k by part (2) as y is a specialization of y_{k - 1}.
Proof of (7). This is clear as their are fewer systems to consider in the computation of \delta ^{Y'}_{Y' \cap Z}.
\square
Lemma 52.18.2. Let Y be a universally catenary Noetherian scheme. Let Z \subset Y be a closed subscheme. Let f : Y' \to Y be a finite type morphism all of whose fibres have dimension \leq e. Set Z' = f^{-1}(Z). Then
\delta _ Z(y) \leq \delta _{Z'}(y') + e - \text{trdeg}_{\kappa (y)}(\kappa (y'))
for y' \in Y' with image y \in Y.
Proof.
If \delta _{Z'}(y') = \infty , then there is nothing to prove. If \delta _{Z'}(y') < \infty , then we choose a system of integral closed subschemes
V'_0 \subset W'_0 \supset V'_1 \subset W'_1 \supset \ldots \subset W'_ k
of Y' with V'_0 \subset Z' and y' the generic point of W'_ k such that \delta _{Z'}(y') = \delta (V'_0, W'_0, \ldots , W'_ k). Denote
V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k
the scheme theoretic images of the above schemes in Y. Observe that y is the generic point of W_ k and that V_0 \subset Z. For each i we look at the diagram
\xymatrix{ V'_ i \ar[r] \ar[d] & W'_ i \ar[d] & V'_{i + 1} \ar[l] \ar[d] \\ V_ i \ar[r] & W_ i & V_{i + 1} \ar[l] }
Denote n_ i the relative dimension of V'_ i/V_ i and m_ i the relative dimension of W'_ i/W_ i; more precisely these are the transcendence degrees of the corresponding extensions of the function fields. Set c_ i = \text{codim}(V_ i, W_ i), c'_ i = \text{codim}(V'_ i, W'_ i), b_ i = \text{codim}(V_{i + 1}, W_ i), and b'_ i = \text{codim}(V'_{i + 1}, W'_ i). By the dimension formula we have
c_ i = c'_ i + n_ i - m_ i \quad \text{and}\quad b_ i = b'_ i + n_{i + 1} - m_ i
See Morphisms, Lemma 29.52.1. Hence c_ i - b_ i = c'_ i - b'_ i + n_ i - n_{i + 1}. Thus we see that
\begin{align*} & c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1} \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - n_ k + c_ k - c'_ k \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k \end{align*}
Thus we see that
\begin{align*} \max _{i = 0, \ldots , k} & (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i) - m_ k \\ & \leq \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1}) + e - m_ k \end{align*}
Since m_ k = \text{trdeg}_{\kappa (y)}(\kappa (y')) we conclude that
\delta (V_0, W_0, \ldots , W_ k) \leq \delta (V'_0, W'_0, \ldots , W'_ k) + e - \text{trdeg}_{\kappa (y)}(\kappa (y'))
as desired.
\square
Example 52.18.4. Let k be a field and Y = \mathbf{A}^ n_ k. Denote \delta : Y \to \mathbf{Z}_{\geq 0} the usual dimension function.
If Z = \{ z\} for some closed point z, then
\delta _ Z(y) = \delta (y) if y \leadsto z and
\delta _ Z(y) = \delta (y) + 1 if y \not\leadsto z.
If Z is a closed subvariety and W = \overline{\{ y\} }, then
\delta _ Z(y) = 0 if W \subset Z,
\delta _ Z(y) = \dim (W) - \dim (Z) if Z is contained in W,
\delta _ Z(y) = 1 if \dim (W) \leq \dim (Z) and W \not\subset Z,
\delta _ Z(y) = \dim (W) - \dim (Z) + 1 if \dim (W) > \dim (Z) and Z \not\subset W.
A generalization of case (1) is if Y is of finite type over a field and Z = \{ z\} is a closed point. Then \delta _ Z(y) = \delta (y) + t where t is the minimum length of a chain of curves connecting z to a closed point of \overline{\{ y\} }.
Comments (0)