The Stacks project

52.18 A distance function

Let $Y$ be a Noetherian scheme and let $Z \subset Y$ be a closed subset. We define a function

52.18.0.1
\begin{equation} \label{algebraization-equation-delta-Z} \delta ^ Y_ Z = \delta _ Z : Y \longrightarrow \mathbf{Z}_{\geq 0} \cup \{ \infty \} \end{equation}

which measures the “distance” of a point of $Y$ from $Z$. For an informal discussion, please see Remark 52.18.3. Let $y \in Y$. We set $\delta _ Z(y) = \infty $ if $y$ is contained in a connected component of $Y$ which does not meet $Z$. If $y$ is contained in a connected component of $Y$ which meets $Z$, then we can find $k \geq 0$ and a system

\[ V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \supset V_ k \subset W_ k \]

of integral closed subschemes of $Y$ such that $V_0 \subset Z$ and $y \in V_ k$ is the generic point. Set $c_ i = \text{codim}(V_ i, W_ i)$ for $i = 0, \ldots , k$ and $b_ i = \text{codim}(V_{i + 1}, W_ i)$ for $i = 0, \ldots , k - 1$. For such a system we set

\[ \delta (V_0, W_0, V_1, \ldots , W_ k) = k + \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) \]

This is $\geq k$ as we can take $i = k$ and we have $c_ k \geq 0$. Finally, we set

\[ \delta _ Z(y) = \min \delta (V_0, W_0, V_1, \ldots , W_ k) \]

where the minimum is over all systems of integral closed subschemes of $Y$ as above.

Lemma 52.18.1. Let $Y$ be a Noetherian scheme and let $Z \subset Y$ be a closed subset.

  1. For $y \in Y$ we have $\delta _ Z(y) = 0 \Leftrightarrow y \in Z$.

  2. The subsets $\{ y \in Y \mid \delta _ Z(y) \leq k\} $ are stable under specialization.

  3. For $y \in Y$ and $z \in \overline{\{ y\} } \cap Z$ we have $\dim (\mathcal{O}_{\overline{\{ y\} }, z}) \geq \delta _ Z(y)$.

  4. If $\delta $ is a dimension function on $Y$, then $\delta (y) \leq \delta _ Z(y) + \delta _{max}$ where $\delta _{max}$ is the maximum value of $\delta $ on $Z$.

  5. If $Y = \mathop{\mathrm{Spec}}(A)$ is the spectrum of a catenary Noetherian local ring with maximal ideal $\mathfrak m$ and $Z = \{ \mathfrak m\} $, then $\delta _ Z(y) = \dim (\overline{\{ y\} })$.

  6. Given a pattern of specializations

    \[ \xymatrix{ & y'_0 \ar@{~>}[ld] \ar@{~>}[rd] & & y'_1 \ar@{~>}[ld] & \ldots & y'_{k - 1} \ar@{~>}[rd] & \\ y_0 & & y_1 & & \ldots & & y_ k = y } \]

    between points of $Y$ with $y_0 \in Z$ and $y_ i' \leadsto y_ i$ an immediate specialization, then $\delta _ Z(y_ k) \leq k$.

  7. If $Y' \subset Y$ is an open subscheme, then $\delta ^{Y'}_{Y' \cap Z}(y') \geq \delta ^ Y_ Z(y')$ for $y' \in Y'$.

Proof. Part (1) is essentially true by definition. Namely, if $y \in Z$, then we can take $k = 0$ and $V_0 = W_0 = \overline{\{ y\} }$.

Proof of (2). Let $y \leadsto y'$ be a nontrivial specialization and let $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ is a system for $y$. Here there are two cases. Case I: $V_ k = W_ k$, i.e., $c_ k = 0$. In this case we can set $V'_ k = W'_ k = \overline{\{ y'\} }$. An easy computation shows that $\delta (V_0, W_0, \ldots , V'_ k, W'_ k) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k)$ because only $b_{k - 1}$ is changed into a bigger integer. Case II: $V_ k \not= W_ k$, i.e., $c_ k > 0$. Observe that in this case $\max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) > 0$. Hence if we set $V'_{k + 1} = W_{k + 1} = \overline{\{ y'\} }$, then although $k$ is replaced by $k + 1$, the maximum now looks like

\[ \max _{i = 0, 1, \ldots , k + 1} (c_ i + c_{i + 1} + \ldots + c_ k + c_{k + 1} - b_ i - b_{i + 1} - \ldots - b_{k - 1} - b_ k) \]

with $c_{k + 1} = 0$ and $b_ k = \text{codim}(V_{k + 1}, W_ k) > 0$. This is strictly smaller than $\max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1})$ and hence $\delta (V_0, W_0, \ldots , V'_{k + 1}, W'_{k + 1}) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k)$ as desired.

Proof of (3). Given $y \in Y$ and $z \in \overline{\{ y\} } \cap Z$ we get the system

\[ V_0 = \overline{\{ z\} } \subset W_0 = \overline{\{ y\} } \]

and $c_0 = \text{codim}(V_0, W_0) = \dim (\mathcal{O}_{\overline{\{ y\} }, z})$ by Properties, Lemma 28.10.3. Thus we see that $\delta (V_0, W_0) = 0 + c_0 = c_0$ which proves what we want.

Proof of (4). Let $\delta $ be a dimension function on $Y$. Let $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ be a system for $y$. Let $y'_ i \in W_ i$ and $y_ i \in V_ i$ be the generic points, so $y_0 \in Z$ and $y_ k = y$. Then we see that

\[ \delta (y_ i) - \delta (y_{i - 1}) = \delta (y'_{i - 1}) - \delta (y_{i - 1}) - \delta (y'_{i - 1}) + \delta (y_ i) = c_{i - 1} - b_{i - 1} \]

Finally, we have $\delta (y'_ k) - \delta (y_{k - 1}) = c_ k$. Thus we see that

\[ \delta (y) - \delta (y_0) = c_0 + \ldots + c_ k - b_0 - \ldots - b_{k - 1} \]

We conclude $\delta (V_0, W_0, \ldots , W_ k) \geq k + \delta (y) - \delta (y_0)$ which proves what we want.

Proof of (5). The function $\delta (y) = \dim (\overline{\{ y\} })$ is a dimension function. Hence $\delta (y) \leq \delta _ Z(y)$ by part (4). By part (3) we have $\delta _ Z(y) \leq \delta (y)$ and we are done.

Proof of (6). Given such a sequence of points, we may assume all the specializations $y'_ i \leadsto y_{i + 1}$ are nontrivial (otherwise we can shorten the chain of specializations). Then we set $V_ i = \overline{\{ y_ i\} }$ and $W_ i = \overline{\{ y'_ i\} }$ and we compute $\delta (V_0, W_1, V_1, \ldots , W_{k - 1}) = k$ because all the codimensions $c_ i$ of $V_ i \subset W_ i$ are $1$ and all $b_ i > 0$. This implies $\delta _ Z(y'_{k - 1}) \leq k$ as $y'_{k - 1}$ is the generic point of $W_ k$. Then $\delta _ Z(y) \leq k$ by part (2) as $y$ is a specialization of $y_{k - 1}$.

Proof of (7). This is clear as their are fewer systems to consider in the computation of $\delta ^{Y'}_{Y' \cap Z}$. $\square$

Lemma 52.18.2. Let $Y$ be a universally catenary Noetherian scheme. Let $Z \subset Y$ be a closed subscheme. Let $f : Y' \to Y$ be a finite type morphism all of whose fibres have dimension $\leq e$. Set $Z' = f^{-1}(Z)$. Then

\[ \delta _ Z(y) \leq \delta _{Z'}(y') + e - \text{trdeg}_{\kappa (y)}(\kappa (y')) \]

for $y' \in Y'$ with image $y \in Y$.

Proof. If $\delta _{Z'}(y') = \infty $, then there is nothing to prove. If $\delta _{Z'}(y') < \infty $, then we choose a system of integral closed subschemes

\[ V'_0 \subset W'_0 \supset V'_1 \subset W'_1 \supset \ldots \subset W'_ k \]

of $Y'$ with $V'_0 \subset Z'$ and $y'$ the generic point of $W'_ k$ such that $\delta _{Z'}(y') = \delta (V'_0, W'_0, \ldots , W'_ k)$. Denote

\[ V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k \]

the scheme theoretic images of the above schemes in $Y$. Observe that $y$ is the generic point of $W_ k$ and that $V_0 \subset Z$. For each $i$ we look at the diagram

\[ \xymatrix{ V'_ i \ar[r] \ar[d] & W'_ i \ar[d] & V'_{i + 1} \ar[l] \ar[d] \\ V_ i \ar[r] & W_ i & V_{i + 1} \ar[l] } \]

Denote $n_ i$ the relative dimension of $V'_ i/V_ i$ and $m_ i$ the relative dimension of $W'_ i/W_ i$; more precisely these are the transcendence degrees of the corresponding extensions of the function fields. Set $c_ i = \text{codim}(V_ i, W_ i)$, $c'_ i = \text{codim}(V'_ i, W'_ i)$, $b_ i = \text{codim}(V_{i + 1}, W_ i)$, and $b'_ i = \text{codim}(V'_{i + 1}, W'_ i)$. By the dimension formula we have

\[ c_ i = c'_ i + n_ i - m_ i \quad \text{and}\quad b_ i = b'_ i + n_{i + 1} - m_ i \]

See Morphisms, Lemma 29.52.1. Hence $c_ i - b_ i = c'_ i - b'_ i + n_ i - n_{i + 1}$. Thus we see that

\begin{align*} & c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1} \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - n_ k + c_ k - c'_ k \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k \end{align*}

Thus we see that

\begin{align*} \max _{i = 0, \ldots , k} & (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i) - m_ k \\ & \leq \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1}) + e - m_ k \end{align*}

Since $m_ k = \text{trdeg}_{\kappa (y)}(\kappa (y'))$ we conclude that

\[ \delta (V_0, W_0, \ldots , W_ k) \leq \delta (V'_0, W'_0, \ldots , W'_ k) + e - \text{trdeg}_{\kappa (y)}(\kappa (y')) \]

as desired. $\square$

Remark 52.18.3. Let $Y$ be a Noetherian scheme and let $Z \subset Y$ be a closed subset. By Lemma 52.18.1 we have

\[ \delta _ Z(y) \leq \min \left\{ k \middle | \begin{matrix} \text{ there exist specializations in }Y \\ y_0 \leftarrow y'_0 \rightarrow y_1 \leftarrow y'_1 \rightarrow \ldots \leftarrow y'_{k - 1} \rightarrow y_ k = y \\ \text{ with }y_0 \in Z\text{ and }y_ i' \leadsto y_ i \text{ immediate} \end{matrix} \right\} \]

We claim that if $Y$ is of finite type over a field, then equality holds. If we ever need this result we will formulate a precise result and prove it here. However, in general if we define $\delta _ Z$ by the right hand side of this inequality, then we don't know if Lemma 52.18.2 remains true.

Example 52.18.4. Let $k$ be a field and $Y = \mathbf{A}^ n_ k$. Denote $\delta : Y \to \mathbf{Z}_{\geq 0}$ the usual dimension function.

  1. If $Z = \{ z\} $ for some closed point $z$, then

    1. $\delta _ Z(y) = \delta (y)$ if $y \leadsto z$ and

    2. $\delta _ Z(y) = \delta (y) + 1$ if $y \not\leadsto z$.

  2. If $Z$ is a closed subvariety and $W = \overline{\{ y\} }$, then

    1. $\delta _ Z(y) = 0$ if $W \subset Z$,

    2. $\delta _ Z(y) = \dim (W) - \dim (Z)$ if $Z$ is contained in $W$,

    3. $\delta _ Z(y) = 1$ if $\dim (W) \leq \dim (Z)$ and $W \not\subset Z$,

    4. $\delta _ Z(y) = \dim (W) - \dim (Z) + 1$ if $\dim (W) > \dim (Z)$ and $Z \not\subset W$.

A generalization of case (1) is if $Y$ is of finite type over a field and $Z = \{ z\} $ is a closed point. Then $\delta _ Z(y) = \delta (y) + t$ where $t$ is the minimum length of a chain of curves connecting $z$ to a closed point of $\overline{\{ y\} }$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EIW. Beware of the difference between the letter 'O' and the digit '0'.