Processing math: 100%

The Stacks project

52.18 A distance function

Let Y be a Noetherian scheme and let Z \subset Y be a closed subset. We define a function

52.18.0.1
\begin{equation} \label{algebraization-equation-delta-Z} \delta ^ Y_ Z = \delta _ Z : Y \longrightarrow \mathbf{Z}_{\geq 0} \cup \{ \infty \} \end{equation}

which measures the “distance” of a point of Y from Z. For an informal discussion, please see Remark 52.18.3. Let y \in Y. We set \delta _ Z(y) = \infty if y is contained in a connected component of Y which does not meet Z. If y is contained in a connected component of Y which meets Z, then we can find k \geq 0 and a system

V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \supset V_ k \subset W_ k

of integral closed subschemes of Y such that V_0 \subset Z and y \in V_ k is the generic point. Set c_ i = \text{codim}(V_ i, W_ i) for i = 0, \ldots , k and b_ i = \text{codim}(V_{i + 1}, W_ i) for i = 0, \ldots , k - 1. For such a system we set

\delta (V_0, W_0, V_1, \ldots , W_ k) = k + \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1})

This is \geq k as we can take i = k and we have c_ k \geq 0. Finally, we set

\delta _ Z(y) = \min \delta (V_0, W_0, V_1, \ldots , W_ k)

where the minimum is over all systems of integral closed subschemes of Y as above.

Lemma 52.18.1. Let Y be a Noetherian scheme and let Z \subset Y be a closed subset.

  1. For y \in Y we have \delta _ Z(y) = 0 \Leftrightarrow y \in Z.

  2. The subsets \{ y \in Y \mid \delta _ Z(y) \leq k\} are stable under specialization.

  3. For y \in Y and z \in \overline{\{ y\} } \cap Z we have \dim (\mathcal{O}_{\overline{\{ y\} }, z}) \geq \delta _ Z(y).

  4. If \delta is a dimension function on Y, then \delta (y) \leq \delta _ Z(y) + \delta _{max} where \delta _{max} is the maximum value of \delta on Z.

  5. If Y = \mathop{\mathrm{Spec}}(A) is the spectrum of a catenary Noetherian local ring with maximal ideal \mathfrak m and Z = \{ \mathfrak m\} , then \delta _ Z(y) = \dim (\overline{\{ y\} }).

  6. Given a pattern of specializations

    \xymatrix{ & y'_0 \ar@{~>}[ld] \ar@{~>}[rd] & & y'_1 \ar@{~>}[ld] & \ldots & y'_{k - 1} \ar@{~>}[rd] & \\ y_0 & & y_1 & & \ldots & & y_ k = y }

    between points of Y with y_0 \in Z and y_ i' \leadsto y_ i an immediate specialization, then \delta _ Z(y_ k) \leq k.

  7. If Y' \subset Y is an open subscheme, then \delta ^{Y'}_{Y' \cap Z}(y') \geq \delta ^ Y_ Z(y') for y' \in Y'.

Proof. Part (1) is essentially true by definition. Namely, if y \in Z, then we can take k = 0 and V_0 = W_0 = \overline{\{ y\} }.

Proof of (2). Let y \leadsto y' be a nontrivial specialization and let V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k is a system for y. Here there are two cases. Case I: V_ k = W_ k, i.e., c_ k = 0. In this case we can set V'_ k = W'_ k = \overline{\{ y'\} }. An easy computation shows that \delta (V_0, W_0, \ldots , V'_ k, W'_ k) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k) because only b_{k - 1} is changed into a bigger integer. Case II: V_ k \not= W_ k, i.e., c_ k > 0. Observe that in this case \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) > 0. Hence if we set V'_{k + 1} = W_{k + 1} = \overline{\{ y'\} }, then although k is replaced by k + 1, the maximum now looks like

\max _{i = 0, 1, \ldots , k + 1} (c_ i + c_{i + 1} + \ldots + c_ k + c_{k + 1} - b_ i - b_{i + 1} - \ldots - b_{k - 1} - b_ k)

with c_{k + 1} = 0 and b_ k = \text{codim}(V_{k + 1}, W_ k) > 0. This is strictly smaller than \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) and hence \delta (V_0, W_0, \ldots , V'_{k + 1}, W'_{k + 1}) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k) as desired.

Proof of (3). Given y \in Y and z \in \overline{\{ y\} } \cap Z we get the system

V_0 = \overline{\{ z\} } \subset W_0 = \overline{\{ y\} }

and c_0 = \text{codim}(V_0, W_0) = \dim (\mathcal{O}_{\overline{\{ y\} }, z}) by Properties, Lemma 28.10.3. Thus we see that \delta (V_0, W_0) = 0 + c_0 = c_0 which proves what we want.

Proof of (4). Let \delta be a dimension function on Y. Let V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k be a system for y. Let y'_ i \in W_ i and y_ i \in V_ i be the generic points, so y_0 \in Z and y_ k = y. Then we see that

\delta (y_ i) - \delta (y_{i - 1}) = \delta (y'_{i - 1}) - \delta (y_{i - 1}) - \delta (y'_{i - 1}) + \delta (y_ i) = c_{i - 1} - b_{i - 1}

Finally, we have \delta (y'_ k) - \delta (y_{k - 1}) = c_ k. Thus we see that

\delta (y) - \delta (y_0) = c_0 + \ldots + c_ k - b_0 - \ldots - b_{k - 1}

We conclude \delta (V_0, W_0, \ldots , W_ k) \geq k + \delta (y) - \delta (y_0) which proves what we want.

Proof of (5). The function \delta (y) = \dim (\overline{\{ y\} }) is a dimension function. Hence \delta (y) \leq \delta _ Z(y) by part (4). By part (3) we have \delta _ Z(y) \leq \delta (y) and we are done.

Proof of (6). Given such a sequence of points, we may assume all the specializations y'_ i \leadsto y_{i + 1} are nontrivial (otherwise we can shorten the chain of specializations). Then we set V_ i = \overline{\{ y_ i\} } and W_ i = \overline{\{ y'_ i\} } and we compute \delta (V_0, W_1, V_1, \ldots , W_{k - 1}) = k because all the codimensions c_ i of V_ i \subset W_ i are 1 and all b_ i > 0. This implies \delta _ Z(y'_{k - 1}) \leq k as y'_{k - 1} is the generic point of W_ k. Then \delta _ Z(y) \leq k by part (2) as y is a specialization of y_{k - 1}.

Proof of (7). This is clear as their are fewer systems to consider in the computation of \delta ^{Y'}_{Y' \cap Z}. \square

Lemma 52.18.2. Let Y be a universally catenary Noetherian scheme. Let Z \subset Y be a closed subscheme. Let f : Y' \to Y be a finite type morphism all of whose fibres have dimension \leq e. Set Z' = f^{-1}(Z). Then

\delta _ Z(y) \leq \delta _{Z'}(y') + e - \text{trdeg}_{\kappa (y)}(\kappa (y'))

for y' \in Y' with image y \in Y.

Proof. If \delta _{Z'}(y') = \infty , then there is nothing to prove. If \delta _{Z'}(y') < \infty , then we choose a system of integral closed subschemes

V'_0 \subset W'_0 \supset V'_1 \subset W'_1 \supset \ldots \subset W'_ k

of Y' with V'_0 \subset Z' and y' the generic point of W'_ k such that \delta _{Z'}(y') = \delta (V'_0, W'_0, \ldots , W'_ k). Denote

V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k

the scheme theoretic images of the above schemes in Y. Observe that y is the generic point of W_ k and that V_0 \subset Z. For each i we look at the diagram

\xymatrix{ V'_ i \ar[r] \ar[d] & W'_ i \ar[d] & V'_{i + 1} \ar[l] \ar[d] \\ V_ i \ar[r] & W_ i & V_{i + 1} \ar[l] }

Denote n_ i the relative dimension of V'_ i/V_ i and m_ i the relative dimension of W'_ i/W_ i; more precisely these are the transcendence degrees of the corresponding extensions of the function fields. Set c_ i = \text{codim}(V_ i, W_ i), c'_ i = \text{codim}(V'_ i, W'_ i), b_ i = \text{codim}(V_{i + 1}, W_ i), and b'_ i = \text{codim}(V'_{i + 1}, W'_ i). By the dimension formula we have

c_ i = c'_ i + n_ i - m_ i \quad \text{and}\quad b_ i = b'_ i + n_{i + 1} - m_ i

See Morphisms, Lemma 29.52.1. Hence c_ i - b_ i = c'_ i - b'_ i + n_ i - n_{i + 1}. Thus we see that

\begin{align*} & c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1} \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - n_ k + c_ k - c'_ k \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k \end{align*}

Thus we see that

\begin{align*} \max _{i = 0, \ldots , k} & (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i) - m_ k \\ & \leq \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1}) + e - m_ k \end{align*}

Since m_ k = \text{trdeg}_{\kappa (y)}(\kappa (y')) we conclude that

\delta (V_0, W_0, \ldots , W_ k) \leq \delta (V'_0, W'_0, \ldots , W'_ k) + e - \text{trdeg}_{\kappa (y)}(\kappa (y'))

as desired. \square

Remark 52.18.3. Let Y be a Noetherian scheme and let Z \subset Y be a closed subset. By Lemma 52.18.1 we have

\delta _ Z(y) \leq \min \left\{ k \middle | \begin{matrix} \text{ there exist specializations in }Y \\ y_0 \leftarrow y'_0 \rightarrow y_1 \leftarrow y'_1 \rightarrow \ldots \leftarrow y'_{k - 1} \rightarrow y_ k = y \\ \text{ with }y_0 \in Z\text{ and }y_ i' \leadsto y_ i \text{ immediate} \end{matrix} \right\}

We claim that if Y is of finite type over a field, then equality holds. If we ever need this result we will formulate a precise result and prove it here. However, in general if we define \delta _ Z by the right hand side of this inequality, then we don't know if Lemma 52.18.2 remains true.

Example 52.18.4. Let k be a field and Y = \mathbf{A}^ n_ k. Denote \delta : Y \to \mathbf{Z}_{\geq 0} the usual dimension function.

  1. If Z = \{ z\} for some closed point z, then

    1. \delta _ Z(y) = \delta (y) if y \leadsto z and

    2. \delta _ Z(y) = \delta (y) + 1 if y \not\leadsto z.

  2. If Z is a closed subvariety and W = \overline{\{ y\} }, then

    1. \delta _ Z(y) = 0 if W \subset Z,

    2. \delta _ Z(y) = \dim (W) - \dim (Z) if Z is contained in W,

    3. \delta _ Z(y) = 1 if \dim (W) \leq \dim (Z) and W \not\subset Z,

    4. \delta _ Z(y) = \dim (W) - \dim (Z) + 1 if \dim (W) > \dim (Z) and Z \not\subset W.

A generalization of case (1) is if Y is of finite type over a field and Z = \{ z\} is a closed point. Then \delta _ Z(y) = \delta (y) + t where t is the minimum length of a chain of curves connecting z to a closed point of \overline{\{ y\} }.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.