Processing math: 1%

The Stacks project

Lemma 52.18.1. Let Y be a Noetherian scheme and let Z \subset Y be a closed subset.

  1. For y \in Y we have \delta _ Z(y) = 0 \Leftrightarrow y \in Z.

  2. The subsets \{ y \in Y \mid \delta _ Z(y) \leq k\} are stable under specialization.

  3. For y \in Y and z \in \overline{\{ y\} } \cap Z we have \dim (\mathcal{O}_{\overline{\{ y\} }, z}) \geq \delta _ Z(y).

  4. If \delta is a dimension function on Y, then \delta (y) \leq \delta _ Z(y) + \delta _{max} where \delta _{max} is the maximum value of \delta on Z.

  5. If Y = \mathop{\mathrm{Spec}}(A) is the spectrum of a catenary Noetherian local ring with maximal ideal \mathfrak m and Z = \{ \mathfrak m\} , then \delta _ Z(y) = \dim (\overline{\{ y\} }).

  6. Given a pattern of specializations

    \xymatrix{ & y'_0 \ar@{~>}[ld] \ar@{~>}[rd] & & y'_1 \ar@{~>}[ld] & \ldots & y'_{k - 1} \ar@{~>}[rd] & \\ y_0 & & y_1 & & \ldots & & y_ k = y }

    between points of Y with y_0 \in Z and y_ i' \leadsto y_ i an immediate specialization, then \delta _ Z(y_ k) \leq k.

  7. If Y' \subset Y is an open subscheme, then \delta ^{Y'}_{Y' \cap Z}(y') \geq \delta ^ Y_ Z(y') for y' \in Y'.

Proof. Part (1) is essentially true by definition. Namely, if y \in Z, then we can take k = 0 and V_0 = W_0 = \overline{\{ y\} }.

Proof of (2). Let y \leadsto y' be a nontrivial specialization and let V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k is a system for y. Here there are two cases. Case I: V_ k = W_ k, i.e., c_ k = 0. In this case we can set V'_ k = W'_ k = \overline{\{ y'\} }. An easy computation shows that \delta (V_0, W_0, \ldots , V'_ k, W'_ k) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k) because only b_{k - 1} is changed into a bigger integer. Case II: V_ k \not= W_ k, i.e., c_ k > 0. Observe that in this case \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) > 0. Hence if we set V'_{k + 1} = W_{k + 1} = \overline{\{ y'\} }, then although k is replaced by k + 1, the maximum now looks like

\max _{i = 0, 1, \ldots , k + 1} (c_ i + c_{i + 1} + \ldots + c_ k + c_{k + 1} - b_ i - b_{i + 1} - \ldots - b_{k - 1} - b_ k)

with c_{k + 1} = 0 and b_ k = \text{codim}(V_{k + 1}, W_ k) > 0. This is strictly smaller than \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) and hence \delta (V_0, W_0, \ldots , V'_{k + 1}, W'_{k + 1}) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k) as desired.

Proof of (3). Given y \in Y and z \in \overline{\{ y\} } \cap Z we get the system

V_0 = \overline{\{ z\} } \subset W_0 = \overline{\{ y\} }

and c_0 = \text{codim}(V_0, W_0) = \dim (\mathcal{O}_{\overline{\{ y\} }, z}) by Properties, Lemma 28.10.3. Thus we see that \delta (V_0, W_0) = 0 + c_0 = c_0 which proves what we want.

Proof of (4). Let \delta be a dimension function on Y. Let V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k be a system for y. Let y'_ i \in W_ i and y_ i \in V_ i be the generic points, so y_0 \in Z and y_ k = y. Then we see that

\delta (y_ i) - \delta (y_{i - 1}) = \delta (y'_{i - 1}) - \delta (y_{i - 1}) - \delta (y'_{i - 1}) + \delta (y_ i) = c_{i - 1} - b_{i - 1}

Finally, we have \delta (y'_ k) - \delta (y_{k - 1}) = c_ k. Thus we see that

\delta (y) - \delta (y_0) = c_0 + \ldots + c_ k - b_0 - \ldots - b_{k - 1}

We conclude \delta (V_0, W_0, \ldots , W_ k) \geq k + \delta (y) - \delta (y_0) which proves what we want.

Proof of (5). The function \delta (y) = \dim (\overline{\{ y\} }) is a dimension function. Hence \delta (y) \leq \delta _ Z(y) by part (4). By part (3) we have \delta _ Z(y) \leq \delta (y) and we are done.

Proof of (6). Given such a sequence of points, we may assume all the specializations y'_ i \leadsto y_{i + 1} are nontrivial (otherwise we can shorten the chain of specializations). Then we set V_ i = \overline{\{ y_ i\} } and W_ i = \overline{\{ y'_ i\} } and we compute \delta (V_0, W_1, V_1, \ldots , W_{k - 1}) = k because all the codimensions c_ i of V_ i \subset W_ i are 1 and all b_ i > 0. This implies \delta _ Z(y'_{k - 1}) \leq k as y'_{k - 1} is the generic point of W_ k. Then \delta _ Z(y) \leq k by part (2) as y is a specialization of y_{k - 1}.

Proof of (7). This is clear as their are fewer systems to consider in the computation of \delta ^{Y'}_{Y' \cap Z}. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.