Lemma 52.18.1. Let $Y$ be a Noetherian scheme and let $Z \subset Y$ be a closed subset.

1. For $y \in Y$ we have $\delta _ Z(y) = 0 \Leftrightarrow y \in Z$.

2. The subsets $\{ y \in Y \mid \delta _ Z(y) \leq k\}$ are stable under specialization.

3. For $y \in Y$ and $z \in \overline{\{ y\} } \cap Z$ we have $\dim (\mathcal{O}_{\overline{\{ y\} }, z}) \geq \delta _ Z(y)$.

4. If $\delta$ is a dimension function on $Y$, then $\delta (y) \leq \delta _ Z(y) + \delta _{max}$ where $\delta _{max}$ is the maximum value of $\delta$ on $Z$.

5. If $Y = \mathop{\mathrm{Spec}}(A)$ is the spectrum of a catenary Noetherian local ring with maximal ideal $\mathfrak m$ and $Z = \{ \mathfrak m\}$, then $\delta _ Z(y) = \dim (\overline{\{ y\} })$.

6. Given a pattern of specializations

$\xymatrix{ & y'_0 \ar@{~>}[ld] \ar@{~>}[rd] & & y'_1 \ar@{~>}[ld] & \ldots & y'_{k - 1} \ar@{~>}[rd] & \\ y_0 & & y_1 & & \ldots & & y_ k = y }$

between points of $Y$ with $y_0 \in Z$ and $y_ i' \leadsto y_ i$ an immediate specialization, then $\delta _ Z(y_ k) \leq k$.

7. If $Y' \subset Y$ is an open subscheme, then $\delta ^{Y'}_{Y' \cap Z}(y') \geq \delta ^ Y_ Z(y')$ for $y' \in Y'$.

Proof. Part (1) is essentially true by definition. Namely, if $y \in Z$, then we can take $k = 0$ and $V_0 = W_0 = \overline{\{ y\} }$.

Proof of (2). Let $y \leadsto y'$ be a nontrivial specialization and let $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ is a system for $y$. Here there are two cases. Case I: $V_ k = W_ k$, i.e., $c_ k = 0$. In this case we can set $V'_ k = W'_ k = \overline{\{ y'\} }$. An easy computation shows that $\delta (V_0, W_0, \ldots , V'_ k, W'_ k) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k)$ because only $b_{k - 1}$ is changed into a bigger integer. Case II: $V_ k \not= W_ k$, i.e., $c_ k > 0$. Observe that in this case $\max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) > 0$. Hence if we set $V'_{k + 1} = W_{k + 1} = \overline{\{ y'\} }$, then although $k$ is replaced by $k + 1$, the maximum now looks like

$\max _{i = 0, 1, \ldots , k + 1} (c_ i + c_{i + 1} + \ldots + c_ k + c_{k + 1} - b_ i - b_{i + 1} - \ldots - b_{k - 1} - b_ k)$

with $c_{k + 1} = 0$ and $b_ k = \text{codim}(V_{k + 1}, W_ k) > 0$. This is strictly smaller than $\max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1})$ and hence $\delta (V_0, W_0, \ldots , V'_{k + 1}, W'_{k + 1}) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k)$ as desired.

Proof of (3). Given $y \in Y$ and $z \in \overline{\{ y\} } \cap Z$ we get the system

$V_0 = \overline{\{ z\} } \subset W_0 = \overline{\{ y\} }$

and $c_0 = \text{codim}(V_0, W_0) = \dim (\mathcal{O}_{\overline{\{ y\} }, z})$ by Properties, Lemma 28.10.3. Thus we see that $\delta (V_0, W_0) = 0 + c_0 = c_0$ which proves what we want.

Proof of (4). Let $\delta$ be a dimension function on $Y$. Let $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ be a system for $y$. Let $y'_ i \in W_ i$ and $y_ i \in V_ i$ be the generic points, so $y_0 \in Z$ and $y_ k = y$. Then we see that

$\delta (y_ i) - \delta (y_{i - 1}) = \delta (y'_{i - 1}) - \delta (y_{i - 1}) - \delta (y'_{i - 1}) + \delta (y_ i) = c_{i - 1} - b_{i - 1}$

Finally, we have $\delta (y'_ k) - \delta (y_{k - 1}) = c_ k$. Thus we see that

$\delta (y) - \delta (y_0) = c_0 + \ldots + c_ k - b_0 - \ldots - b_{k - 1}$

We conclude $\delta (V_0, W_0, \ldots , W_ k) \geq k + \delta (y) - \delta (y_0)$ which proves what we want.

Proof of (5). The function $\delta (y) = \dim (\overline{\{ y\} })$ is a dimension function. Hence $\delta (y) \leq \delta _ Z(y)$ by part (4). By part (3) we have $\delta _ Z(y) \leq \delta (y)$ and we are done.

Proof of (6). Given such a sequence of points, we may assume all the specializations $y'_ i \leadsto y_{i + 1}$ are nontrivial (otherwise we can shorten the chain of specializations). Then we set $V_ i = \overline{\{ y_ i\} }$ and $W_ i = \overline{\{ y'_ i\} }$ and we compute $\delta (V_0, W_1, V_1, \ldots , W_{k - 1}) = k$ because all the codimensions $c_ i$ of $V_ i \subset W_ i$ are $1$ and all $b_ i > 0$. This implies $\delta _ Z(y'_{k - 1}) \leq k$ as $y'_{k - 1}$ is the generic point of $W_ k$. Then $\delta _ Z(y) \leq k$ by part (2) as $y$ is a specialization of $y_{k - 1}$.

Proof of (7). This is clear as their are fewer systems to consider in the computation of $\delta ^{Y'}_{Y' \cap Z}$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EIY. Beware of the difference between the letter 'O' and the digit '0'.