The Stacks project

Lemma 52.18.1. Let $Y$ be a Noetherian scheme and let $Z \subset Y$ be a closed subset.

  1. For $y \in Y$ we have $\delta _ Z(y) = 0 \Leftrightarrow y \in Z$.

  2. The subsets $\{ y \in Y \mid \delta _ Z(y) \leq k\} $ are stable under specialization.

  3. For $y \in Y$ and $z \in \overline{\{ y\} } \cap Z$ we have $\dim (\mathcal{O}_{\overline{\{ y\} }, z}) \geq \delta _ Z(y)$.

  4. If $\delta $ is a dimension function on $Y$, then $\delta _ Z(y) \geq \delta (y) - \delta _{max}$ where $\delta _{max}$ is the maximum value of $\delta $ on $Z$.

  5. If $Y = \mathop{\mathrm{Spec}}(A)$ is the spectrum of a catenary Noetherian local ring with maximal ideal $\mathfrak m$ and $Z = \{ \mathfrak m\} $, then $\delta _ Z(y) = \dim (\overline{\{ y\} })$.

  6. If $Y' \subset Y$ is an open subscheme, then $\delta ^{Y'}_{Y' \cap Z}(y') \geq \delta ^ Y_ Z(y')$ for $y' \in Y'$.

Assume $Y$ is catenary. Then

  1. Let $y' \leadsto y$ be an immediate specialization of points of $Y$. If $Y$ is catenary, then $\delta _ Z(y') \leq \delta _ Z(y) + 1$.

  2. Given a pattern of specializations

    \[ \xymatrix{ & y'_0 \ar@{~>}[ld] \ar@{~>}[rd] & & y'_1 \ar@{~>}[ld] & \ldots & y'_{k - 1} \ar@{~>}[rd] & \\ y_0 & & y_1 & & \ldots & & y_ k = y } \]

    between points of $Y$ with $y_0 \in Z$ and $y_ i' \leadsto y_ i$ an immediate specialization, then $\delta _ Z(y_ k) \leq k$.

Proof. Proof of (1). If $y \in Z$, then we can take $k = 0$ and $V_0 = W_0 = \overline{\{ y\} }$ and we get $\delta (V_0, W_0) = 0$ so $\delta _ Z(y) = 0$. If $y \not\in Z$, then for every system $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ for $y$ we either have $k = 0$ and $V_0 \not= W_0$ or $k > 0$. In both cases $\delta (V_0, W_0, \ldots , W_ k) > 0$. Hence $\delta _ Z(y) > 0$.

Proof of (2). Let $y \leadsto y'$ be a nontrivial specialization and let $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ is a system for $y$. Here there are two cases. Case I: $V_ k = W_ k$, i.e., $c_ k = 0$. In this case we can set $V'_ k = W'_ k = \overline{\{ y'\} }$. An easy computation shows that $\delta (V_0, W_0, \ldots , V'_ k, W'_ k) \leq \delta (V_0, W_0, \ldots , V_ k, W_ k)$ because only $b_{k - 1}$ is changed into a bigger integer. Case II: $V_ k \not= W_ k$, i.e., $c_ k > 0$. In this case, setting $V_{k + 1} = W_{k + 1} = \overline{\{ y'\} }$ we see that $V_0 \subset W_0 \supset \ldots \subset W_ k \supset V_{k + 1} \subset W_{k + 1}$ is a system for $y'$. Then $c_{k + 1} = 0$ and $b_ k > 0$ so we get

\begin{align*} & \delta (V_0, \ldots , W_{k + 1}) \\ & = k + 1 + \max _{i = 0, 1, \ldots , k + 1} (c_ i + c_{i + 1} + \ldots + c_ k + c_{k + 1} - b_ i - b_{i + 1} - \ldots - b_{k - 1} - b_ k) \\ & = k + 1 + \max _{i = 0, 1, \ldots , k + 1} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1} - b_ k) \\ & \leq k + \max _{i = 0, 1, \ldots , k} (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) \\ & = \delta (V_0, \ldots , W_ k) \end{align*}

The inequality holds because $c_ k > 0$ and $b_ k > 0$ which in particular implies that $\delta (V_0, \ldots , W_ k) \geq k + c_ k \geq k + 1$.

Proof of (3). Given $y \in Y$ and $z \in \overline{\{ y\} } \cap Z$ we get the system

\[ V_0 = \overline{\{ z\} } \subset W_0 = \overline{\{ y\} } \]

and $c_0 = \text{codim}(V_0, W_0) = \dim (\mathcal{O}_{\overline{\{ y\} }, z})$ by Properties, Lemma 28.10.3. Thus we see that $\delta (V_0, W_0) = 0 + c_0 = c_0$ which proves what we want.

Proof of (4). Let $\delta $ be a dimension function on $Y$. Let $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ be a system for $y$. Let $y'_ i \in W_ i$ and $y_ i \in V_ i$ be the generic points, so $y_0 \in Z$ and $y_ k = y$. Then we see that

\[ \delta (y_ i) - \delta (y_{i - 1}) = \delta (y'_{i - 1}) - \delta (y_{i - 1}) - \delta (y'_{i - 1}) + \delta (y_ i) = c_{i - 1} - b_{i - 1} \]

Finally, we have $\delta (y'_ k) - \delta (y_{k - 1}) = c_ k$. Thus we see that

\[ \delta (y) - \delta (y_0) = c_0 + \ldots + c_ k - b_0 - \ldots - b_{k - 1} \]

We conclude $\delta (V_0, W_0, \ldots , W_ k) \geq k + \delta (y) - \delta (y_0)$ which proves what we want.

Proof of (5). The function $\delta (y) = \dim (\overline{\{ y\} })$ is a dimension function. Hence $\delta (y) \leq \delta _ Z(y)$ by part (4). By part (3) we have $\delta _ Z(y) \leq \delta (y)$ and we are done.

Proof of (6). This is clear as their are fewer systems to consider in the computation of $\delta ^{Y'}_{Y' \cap Z}$.

Proof of (7). Let $V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k$ be a system for $y$. Set $W'_ k = \overline{\{ y'\} }$. Since $Y$ is catenary, we see that $\text{codim}(V_ k, W'_ k) = \text{codim}(V_ k, W_ k) + 1$. It follows easily that $\delta (V_0, \ldots , V_ k, W'_ k) \leq \delta (V_0, \ldots , V_ k, W_ k) + 1$ which proves what we want.

Proof of (8): combine (7) and (2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EIY. Beware of the difference between the letter 'O' and the digit '0'.