The Stacks project

Lemma 52.18.2. Let $Y$ be a universally catenary Noetherian scheme. Let $Z \subset Y$ be a closed subscheme. Let $f : Y' \to Y$ be a finite type morphism all of whose fibres have dimension $\leq e$. Set $Z' = f^{-1}(Z)$. Then

\[ \delta _ Z(y) \leq \delta _{Z'}(y') + e - \text{trdeg}_{\kappa (y)}(\kappa (y')) \]

for $y' \in Y'$ with image $y \in Y$.

Proof. If $\delta _{Z'}(y') = \infty $, then there is nothing to prove. If $\delta _{Z'}(y') < \infty $, then we choose a system of integral closed subschemes

\[ V'_0 \subset W'_0 \supset V'_1 \subset W'_1 \supset \ldots \subset W'_ k \]

of $Y'$ with $V'_0 \subset Z'$ and $y'$ the generic point of $W'_ k$ such that $\delta _{Z'}(y') = \delta (V'_0, W'_0, \ldots , W'_ k)$. Denote

\[ V_0 \subset W_0 \supset V_1 \subset W_1 \supset \ldots \subset W_ k \]

the scheme theoretic images of the above schemes in $Y$. Observe that $y$ is the generic point of $W_ k$ and that $V_0 \subset Z$. For each $i$ we look at the diagram

\[ \xymatrix{ V'_ i \ar[r] \ar[d] & W'_ i \ar[d] & V'_{i + 1} \ar[l] \ar[d] \\ V_ i \ar[r] & W_ i & V_{i + 1} \ar[l] } \]

Denote $n_ i$ the relative dimension of $V'_ i/V_ i$ and $m_ i$ the relative dimension of $W'_ i/W_ i$; more precisely these are the transcendence degrees of the corresponding extensions of the function fields. Set $c_ i = \text{codim}(V_ i, W_ i)$, $c'_ i = \text{codim}(V'_ i, W'_ i)$, $b_ i = \text{codim}(V_{i + 1}, W_ i)$, and $b'_ i = \text{codim}(V'_{i + 1}, W'_ i)$. By the dimension formula we have

\[ c_ i = c'_ i + n_ i - m_ i \quad \text{and}\quad b_ i = b'_ i + n_{i + 1} - m_ i \]

See Morphisms, Lemma 29.52.1. Hence $c_ i - b_ i = c'_ i - b'_ i + n_ i - n_{i + 1}$. Thus we see that

\begin{align*} & c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1} \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - n_ k + c_ k - c'_ k \\ & = c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k \end{align*}

Thus we see that

\begin{align*} \max _{i = 0, \ldots , k} & (c_ i + c_{i + 1} + \ldots + c_ k - b_ i - b_{i + 1} - \ldots - b_{k - 1}) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i - m_ k) \\ & = \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1} + n_ i) - m_ k \\ & \leq \max _{i = 0, \ldots , k} (c'_ i + c'_{i + 1} + \ldots + c'_ k - b'_ i - b'_{i + 1} - \ldots - b'_{k - 1}) + e - m_ k \end{align*}

Since $m_ k = \text{trdeg}_{\kappa (y)}(\kappa (y'))$ we conclude that

\[ \delta (V_0, W_0, \ldots , W_ k) \leq \delta (V'_0, W'_0, \ldots , W'_ k) + e - \text{trdeg}_{\kappa (y)}(\kappa (y')) \]

as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EIZ. Beware of the difference between the letter 'O' and the digit '0'.