Lemma 58.24.1. In Situation 58.19.1 assume

1. $A$ has a dualizing complex and is $f$-adically complete,

2. one of the following is true

1. $A_ f$ is $(S_2)$ and every irreducible component of $X$ not contained in $X_0$ has dimension $\geq 4$, or

2. if $\mathfrak p \not\in V(f)$ and $V(\mathfrak p) \cap V(f) \not= \{ \mathfrak m\}$, then $\text{depth}(A_\mathfrak p) + \dim (A/\mathfrak p) > 3$.

3. for every maximal ideal $\mathfrak p \subset A_ f$ purity holds for $(A_ f)_\mathfrak p$.

Then the restriction functor $\textit{FÉt}_ U \to \textit{FÉt}_{U_0}$ is essentially surjective.

Proof. Let $V_0 \to U_0$ be a finite étale morphism. By Lemma 58.23.1 there exists an open $U' \subset U$ containing $U_0$ and a finite étale morphism $V' \to U$ whose base change to $U_0$ is isomorphic to $V_0 \to U_0$. Since $U' \supset U_0$ we see that $U \setminus U'$ consists of points corresponding to prime ideals $\mathfrak p_1, \ldots , \mathfrak p_ n$ as in (3). By assumption we can find finite étale morphisms $V'_ i \to \mathop{\mathrm{Spec}}(A_{\mathfrak p_ i})$ agreeing with $V' \to U'$ over $U' \times _ U \mathop{\mathrm{Spec}}(A_{\mathfrak p_ i})$. By Limits, Lemma 32.19.1 applied $n$ times we see that $V' \to U'$ extends to a finite étale morphism $V \to U$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).