Lemma 58.24.2. Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $f \in \mathfrak m$. Assume
$A$ is $f$-adically complete,
$f$ is a nonzerodivisor,
$H^1_\mathfrak m(A/fA)$ and $H^2_\mathfrak m(A/fA)$ are finite $A$-modules,
for every maximal ideal $\mathfrak p \subset A_ f$ purity holds for $(A_ f)_\mathfrak p$.
Then the restriction functor $\textit{FÉt}_ U \to \textit{FÉt}_{U_0}$ is essentially surjective.
Comments (0)