The Stacks project

Lemma 52.28.2. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $\mathcal{L}$ be an ample invertible $\mathcal{O}_ X$-module. Let $s \in \Gamma (X, \mathcal{L})$. Let $Y = Z(s)$ be the zero scheme of $s$ with $n$th infinitesimal neighbourhood $Y_ n = Z(s^ n)$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Assume that for all $x \in X \setminus Y$ we have

\[ \text{depth}(\mathcal{F}_ x) + \dim (\overline{\{ x\} }) > 1 \]

Then $\Gamma (V, \mathcal{F}) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{F}|_{Y_ n})$ is an isomorphism for any open subscheme $V \subset X$ containing $Y$.

Proof. By Proposition 52.28.1 this is true for $V = X$. Thus it suffices to show that the map $\Gamma (V, \mathcal{F}) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{F}|_{Y_ n})$ is injective. If $\sigma \in \Gamma (V, \mathcal{F})$ maps to zero, then its support is disjoint from $Y$ (details omitted; hint: use Krull's intersection theorem). Then the closure $T \subset X$ of $\text{Supp}(\sigma )$ is disjoint from $Y$. Whence $T$ is proper over $k$ (being closed in $X$) and affine (being closed in the affine scheme $X \setminus Y$, see Morphisms, Lemma 29.43.18) and hence finite over $k$ (Morphisms, Lemma 29.44.11). Thus $T$ is a finite set of closed points of $X$. Thus $\text{depth}(\mathcal{F}_ x) \geq 2$ is at least $1$ for $x \in T$ by our assumption. We conclude that $\Gamma (V, \mathcal{F}) \to \Gamma (V \setminus T, \mathcal{F})$ is injective and $\sigma = 0$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EL2. Beware of the difference between the letter 'O' and the digit '0'.