Proposition 58.27.2. Let k be a field. Let X be a proper scheme over k. Let \mathcal{L} be an ample invertible \mathcal{O}_ X-module. Let s \in \Gamma (X, \mathcal{L}). Let Y = Z(s) be the zero scheme of s. Let \mathcal{V} be the set of open subschemes of X containing Y ordered by reverse inclusion. Assume that for all x \in X \setminus Y we have
Then the restriction functor
is an equivalence.
Comments (0)