Lemma 67.11.9. Let $S$ be a scheme. Let $X$ be a decent algebraic space over $S$. Let $\overline{x}$ be a geometric point of $X$ lying over $x \in |X|$. The étale local ring $\mathcal{O}_{X, \overline{x}}$ of $X$ at $\overline{x}$ (Properties of Spaces, Definition 65.22.2) is the strict henselization of the henselian local ring $\mathcal{O}_{X, x}^ h$ of $X$ at $x$.

**Proof.**
Follows from Lemma 67.11.8, Properties of Spaces, Lemma 65.22.1 and the fact that $(R^ h)^{sh} = R^{sh}$ for a local ring $(R, \mathfrak m, \kappa )$ and a given separable algebraic closure $\kappa ^{sep}$ of $\kappa $. This equality follows from Algebra, Lemma 10.154.7.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)