Lemma 71.10.10. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume that pullbacks of meromorphic functions are defined for $f$ (see Definition 71.10.6).
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ Y$-modules. There is a canonical pullback map $f^* : \Gamma (Y, \mathcal{K}_ Y(\mathcal{F})) \to \Gamma (X, \mathcal{K}_ X(f^*\mathcal{F}))$ for meromorphic sections of $\mathcal{F}$.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. A regular meromorphic section $s$ of $\mathcal{L}$ pulls back to a regular meromorphic section $f^*s$ of $f^*\mathcal{L}$.
Comments (0)