Loading web-font TeX/Math/Italic

The Stacks project

Lemma 72.7.5. Let S be a scheme. Let X be a locally Noetherian integral algebraic space over S. Let \mathcal{L}, \mathcal{N} be invertible \mathcal{O}_ X-modules. Let s, resp. t be a nonzero meromorphic section of \mathcal{L}, resp. \mathcal{N}. Then st is a nonzero meromorphic section of \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} and

\text{div}_{\mathcal{L} \otimes \mathcal{N}}(st) = \text{div}_\mathcal {L}(s) + \text{div}_\mathcal {N}(t)

in \text{Div}(X). In particular, the Weil divisor class of \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} is the sum of the Weil divisor classes of \mathcal{L} and \mathcal{N}.

Proof. Let s, resp. t be a nonzero meromorphic section of \mathcal{L}, resp. \mathcal{N}. Then st is a nonzero meromorphic section of \mathcal{L} \otimes \mathcal{N}. Let Z \subset X be a prime divisor. Let \xi \in |Z| be its generic point. Choose generators s_\xi \in \mathcal{L}_\xi , and t_\xi \in \mathcal{N}_\xi with notation as described earlier in this section. Then s_\xi \otimes t_\xi is a generator for (\mathcal{L} \otimes \mathcal{N})_\xi . So st/(s_\xi t_\xi ) = (s/s_\xi )(t/t_\xi ) in Q(\mathcal{O}_{X, \xi }^ h). Applying the additivity of Algebra, Lemma 10.121.1 we conclude that

\text{div}_{\mathcal{L} \otimes \mathcal{N}, Z}(st) = \text{div}_{\mathcal{L}, Z}(s) + \text{div}_{\mathcal{N}, Z}(t)

Some details omitted. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.