Lemma 72.7.5. Let S be a scheme. Let X be a locally Noetherian integral algebraic space over S. Let \mathcal{L}, \mathcal{N} be invertible \mathcal{O}_ X-modules. Let s, resp. t be a nonzero meromorphic section of \mathcal{L}, resp. \mathcal{N}. Then st is a nonzero meromorphic section of \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} and
\text{div}_{\mathcal{L} \otimes \mathcal{N}}(st) = \text{div}_\mathcal {L}(s) + \text{div}_\mathcal {N}(t)
in \text{Div}(X). In particular, the Weil divisor class of \mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N} is the sum of the Weil divisor classes of \mathcal{L} and \mathcal{N}.
Proof.
Let s, resp. t be a nonzero meromorphic section of \mathcal{L}, resp. \mathcal{N}. Then st is a nonzero meromorphic section of \mathcal{L} \otimes \mathcal{N}. Let Z \subset X be a prime divisor. Let \xi \in |Z| be its generic point. Choose generators s_\xi \in \mathcal{L}_\xi , and t_\xi \in \mathcal{N}_\xi with notation as described earlier in this section. Then s_\xi \otimes t_\xi is a generator for (\mathcal{L} \otimes \mathcal{N})_\xi . So st/(s_\xi t_\xi ) = (s/s_\xi )(t/t_\xi ) in Q(\mathcal{O}_{X, \xi }^ h). Applying the additivity of Algebra, Lemma 10.121.1 we conclude that
\text{div}_{\mathcal{L} \otimes \mathcal{N}, Z}(st) = \text{div}_{\mathcal{L}, Z}(s) + \text{div}_{\mathcal{N}, Z}(t)
Some details omitted.
\square
Comments (0)