The Stacks project

Lemma 38.38.3. Let $p$ be a prime number. Let $S$ be a scheme over $\mathbf{F}_ p$. Let $(\mathit{Sch}/S)_ h$ be a site as in Definition 38.34.13. The rule

\[ \mathcal{F}(X) = \mathop{\mathrm{lim}}\nolimits _ F \Gamma (X, \mathcal{O}_ X) \]

defines a sheaf on $(\mathit{Sch}/S)_ h$.

Proof. To prove $\mathcal{F}$ is a sheaf, let's check conditions (1), (2), (3), and (4) of Lemma 38.37.12. Condition (1) holds because limits of sheaves are sheaves and $\mathcal{O}$ is a Zariski sheaf. Condition (2) holds because $\mathcal{O}$ is an fppf sheaf (Descent, Lemma 35.8.1) and if $A$ is the equalizer of two maps $B \to C$ of $\mathbf{F}_ p$-algebras, then $\mathop{\mathrm{lim}}\nolimits _ F A$ is the equalizer of the two maps $\mathop{\mathrm{lim}}\nolimits _ F B \to \mathop{\mathrm{lim}}\nolimits _ F C$.

We check condition (3). Let $A, f, J$ be as in Example 38.37.10. We have to show that

\begin{align*} \mathop{\mathrm{lim}}\nolimits _ F A & \to \mathop{\mathrm{lim}}\nolimits _ F A/J \times _{\mathop{\mathrm{lim}}\nolimits _ F A/fA + J} \mathop{\mathrm{lim}}\nolimits _ F A/fA \\ & = \mathop{\mathrm{lim}}\nolimits _ F (A/J \times _{A/fA + J} A/fA) \\ & = \mathop{\mathrm{lim}}\nolimits _ F A/(fA \cap J) \end{align*}

is bijective. Since $J$ is annihilated by a power of $f$ we see that $\mathfrak a = fA \cap J$ is a nilpotent ideal, i.e., there exists an $n$ such that $\mathfrak a^ n = 0$. It is straightforward to verify that in this case $\mathop{\mathrm{lim}}\nolimits _ F A \to \mathop{\mathrm{lim}}\nolimits _ F A/\mathfrak a$ is bijective.

We check condition (4). Let $X, X', Z, E$ be as in Example 38.37.11. By Lemma 38.38.1 and the same argument as above we see that

\[ \mathcal{F}(X) = \mathop{\mathrm{lim}}\nolimits _ F \Gamma (X, \mathcal{O}_ X) \longrightarrow \mathop{\mathrm{lim}}\nolimits _ F \Gamma (X', \mathcal{O}_{X'}) = \mathcal{F}(X') \]

is bijective. Since $E = \mathbf{P}^1_ Z$ in this case we also see that $\mathcal{F}(Z) \to \mathcal{F}(E)$ is bijective. Thus the conclusion holds in this case as well. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EVL. Beware of the difference between the letter 'O' and the digit '0'.