The Stacks project

Proposition 38.39.4. Let $p$ be a prime number. Let $S$ be a scheme in characteristic $p$. Then the category fibred in groupoids

\[ p : \mathcal{S} \longrightarrow (\mathit{Sch}/S)_ h \]

whose fibre category over $U$ is the category of finite locally free $\mathop{\mathrm{colim}}\nolimits _ F \mathcal{O}_ U$-modules over $U$ is a stack in groupoids. Moreover, if $U$ is quasi-compact and quasi-separated, then $\mathcal{S}_ U$ is $\mathop{\mathrm{colim}}\nolimits _ F \textit{Vect}(U)$.

Proof. The final assertion is the content of Lemma 38.39.1. To prove the proposition we will check conditions (1), (2), and (3) of Lemma 38.37.13.

Condition (1) holds because by definition we have glueing for the Zariski topology.

To see condition (2), suppose that $f : X \to Y$ is a surjective, flat, proper morphism of finite presentation over $S$ with $Y$ affine. Since $Y, X, X \times _ Y X$ are quasi-compact and quasi-separated, we can use the description of fibre categories given in the statement of the proposition. Then it is clearly enough to show that

\[ \textit{Vect}(Y) \longrightarrow \textit{Vect}(X) \times _{\textit{Vect}(X \times _ Y X)} \textit{Vect}(X) \]

is an equivalence (as this will imply the same for the colimits). This follows immediately from fppf descent of finite locally free modules, see Descent, Proposition 35.5.2 and Lemma 35.7.6.

Condition (3) is the content of Lemmas 38.39.2 and 38.39.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EXE. Beware of the difference between the letter 'O' and the digit '0'.