Lemma 21.46.4. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let E be an object of D(\mathcal{O}). Let a \in \mathbf{Z}. The following are equivalent
E has tor-amplitude in [a, \infty ].
E can be represented by a K-flat complex \mathcal{E}^\bullet of flat \mathcal{O}-modules with \mathcal{E}^ i = 0 for i \not\in [a, \infty ].
Moreover, we can choose \mathcal{E}^\bullet such that any pullback by a morphism of ringed sites is a K-flat complex with flat terms.
Proof.
The implication (2) \Rightarrow (1) is immediate. Assume (1) holds. First we choose a K-flat complex \mathcal{K}^\bullet with flat terms representing E, see Lemma 21.17.11. For any \mathcal{O}-module \mathcal{M} the cohomology of
\mathcal{K}^{n - 1} \otimes _\mathcal {O} \mathcal{M} \to \mathcal{K}^ n \otimes _\mathcal {O} \mathcal{M} \to \mathcal{K}^{n + 1} \otimes _\mathcal {O} \mathcal{M}
computes H^ n(E \otimes _\mathcal {O}^\mathbf {L} \mathcal{M}). This is always zero for n < a. Hence if we apply Lemma 21.46.2 to the complex \ldots \to \mathcal{K}^{a - 1} \to \mathcal{K}^ a \to \mathcal{K}^{a + 1} we conclude that \mathcal{N} = \mathop{\mathrm{Coker}}(\mathcal{K}^{a - 1} \to \mathcal{K}^ a) is a flat \mathcal{O}-module. We set
\mathcal{E}^\bullet = \tau _{\geq a}\mathcal{K}^\bullet = (\ldots \to 0 \to \mathcal{N} \to \mathcal{K}^{a + 1} \to \ldots )
The kernel \mathcal{L}^\bullet of \mathcal{K}^\bullet \to \mathcal{E}^\bullet is the complex
\mathcal{L}^\bullet = (\ldots \to \mathcal{K}^{a - 1} \to \mathcal{I} \to 0 \to \ldots )
where \mathcal{I} \subset \mathcal{K}^ a is the image of \mathcal{K}^{a - 1} \to \mathcal{K}^ a. Since we have the short exact sequence 0 \to \mathcal{I} \to \mathcal{K}^ a \to \mathcal{N} \to 0 we see that \mathcal{I} is a flat \mathcal{O}-module. Thus \mathcal{L}^\bullet is a bounded above complex of flat modules, hence K-flat by Lemma 21.17.8. It follows that \mathcal{E}^\bullet is K-flat by Lemma 21.17.7.
Proof of the final assertion. Let f : (\mathcal{C}', \mathcal{O}') \to (\mathcal{C}, \mathcal{O}) be a morphism of ringed sites. By Lemma 21.18.1 the complex f^*\mathcal{K}^\bullet is K-flat with flat terms. The complex f^*\mathcal{L}^\bullet is K-flat as it is a bounded above complex of flat \mathcal{O}'-modules. We have a short exact sequence of complexes of \mathcal{O}'-modules
0 \to f^*\mathcal{L}^\bullet \to f^*\mathcal{K}^\bullet \to f^*\mathcal{E}^\bullet \to 0
because the short exact sequence 0 \to \mathcal{I} \to \mathcal{K}^ a \to \mathcal{N} \to 0 of flat modules pulls back to a short exact sequence. By Lemma 21.17.7. the complex f^*\mathcal{E}^\bullet is K-flat and the proof is complete.
\square
Comments (0)