Lemma 21.46.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $E$ be an object of $D(\mathcal{O})$. Let $a \in \mathbf{Z}$. The following are equivalent

$E$ has tor-amplitude in $[a, \infty ]$.

$E$ can be represented by a K-flat complex $\mathcal{E}^\bullet $ of flat $\mathcal{O}$-modules with $\mathcal{E}^ i = 0$ for $i \not\in [a, \infty ]$.

Moreover, we can choose $\mathcal{E}^\bullet $ such that any pullback by a morphism of ringed sites is a K-flat complex with flat terms.

**Proof.**
The implication (2) $\Rightarrow $ (1) is immediate. Assume (1) holds. First we choose a K-flat complex $\mathcal{K}^\bullet $ with flat terms representing $E$, see Lemma 21.17.11. For any $\mathcal{O}$-module $\mathcal{M}$ the cohomology of

\[ \mathcal{K}^{n - 1} \otimes _\mathcal {O} \mathcal{M} \to \mathcal{K}^ n \otimes _\mathcal {O} \mathcal{M} \to \mathcal{K}^{n + 1} \otimes _\mathcal {O} \mathcal{M} \]

computes $H^ n(E \otimes _\mathcal {O}^\mathbf {L} \mathcal{M})$. This is always zero for $n < a$. Hence if we apply Lemma 21.46.2 to the complex $\ldots \to \mathcal{K}^{a - 1} \to \mathcal{K}^ a \to \mathcal{K}^{a + 1}$ we conclude that $\mathcal{N} = \mathop{\mathrm{Coker}}(\mathcal{K}^{a - 1} \to \mathcal{K}^ a)$ is a flat $\mathcal{O}$-module. We set

\[ \mathcal{E}^\bullet = \tau _{\geq a}\mathcal{K}^\bullet = (\ldots \to 0 \to \mathcal{N} \to \mathcal{K}^{a + 1} \to \ldots ) \]

The kernel $\mathcal{L}^\bullet $ of $\mathcal{K}^\bullet \to \mathcal{E}^\bullet $ is the complex

\[ \mathcal{L}^\bullet = (\ldots \to \mathcal{K}^{a - 1} \to \mathcal{I} \to 0 \to \ldots ) \]

where $\mathcal{I} \subset \mathcal{K}^ a$ is the image of $\mathcal{K}^{a - 1} \to \mathcal{K}^ a$. Since we have the short exact sequence $0 \to \mathcal{I} \to \mathcal{K}^ a \to \mathcal{N} \to 0$ we see that $\mathcal{I}$ is a flat $\mathcal{O}$-module. Thus $\mathcal{L}^\bullet $ is a bounded above complex of flat modules, hence K-flat by Lemma 21.17.8. It follows that $\mathcal{E}^\bullet $ is K-flat by Lemma 21.17.7.

Proof of the final assertion. Let $f : (\mathcal{C}', \mathcal{O}') \to (\mathcal{C}, \mathcal{O})$ be a morphism of ringed sites. By Lemma 21.18.1 the complex $f^*\mathcal{K}^\bullet $ is K-flat with flat terms. The complex $f^*\mathcal{L}^\bullet $ is K-flat as it is a bounded above complex of flat $\mathcal{O}'$-modules. We have a short exact sequence of complexes of $\mathcal{O}'$-modules

\[ 0 \to f^*\mathcal{L}^\bullet \to f^*\mathcal{K}^\bullet \to f^*\mathcal{E}^\bullet \to 0 \]

because the short exact sequence $0 \to \mathcal{I} \to \mathcal{K}^ a \to \mathcal{N} \to 0$ of flat modules pulls back to a short exact sequence. By Lemma 21.17.7. the complex $f^*\mathcal{E}^\bullet $ is K-flat and the proof is complete.
$\square$

## Comments (0)