The Stacks project

61.31 Change of partial universe

We advise the reader to skip this section: here we show that cohomology of sheaves in the pro-étale topology is independent of the choice of partial universe. Namely, the functor $g_*$ of Lemma 61.31.2 below is an embedding of small pro-étale topoi which does not change cohomology. For big pro-étale sites we have Lemmas 61.31.3 and 61.31.4 saying essentially the same thing.

But first, as promised in Section 61.12 we prove that the topology on a big pro-étale site $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ is in some sense induced from the pro-étale topology on the category of all schemes.

Lemma 61.31.1. Let $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ be a big pro-étale site as in Definition 61.12.7. Let $T \in \mathop{\mathrm{Ob}}\nolimits (\mathit{Sch}_{pro\text{-}\acute{e}tale})$. Let $\{ T_ i \to T\} _{i \in I}$ be an arbitrary pro-étale covering of $T$. There exists a covering $\{ U_ j \to T\} _{j \in J}$ of $T$ in the site $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ which refines $\{ T_ i \to T\} _{i \in I}$.

Proof. Namely, we first let $\{ V_ k \to T\} $ be a covering as in Lemma 61.13.3. Then the pro-étale coverings $\{ T_ i \times _ T V_ k \to V_ k\} $ can be refined by a finite disjoint open covering $V_ k = V_{k, 1} \amalg \ldots \amalg V_{k, n_ k}$, see Lemma 61.13.1. Then $\{ V_{k, i} \to T\} $ is a covering of $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ which refines $\{ T_ i \to T\} _{i \in I}$. $\square$

We first state and prove the comparison for the small pro-étale sites. Note that we are not claiming that the small pro-étale topos of a scheme is independent of the choice of partial universe; this isn't true in contrast with the case of the small étale topos (Étale Cohomology, Lemma 59.21.2).

Lemma 61.31.2. Let $S$ be a scheme. Let $S_{pro\text{-}\acute{e}tale}\subset S_{pro\text{-}\acute{e}tale}'$ be two small pro-étale sites of $S$ as constructed in Definition 61.12.8. Then the inclusion functor satisfies the assumptions of Sites, Lemma 7.21.8. Hence there exist morphisms of topoi

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}) \ar[r]^ g & \mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}') \ar[r]^ f & \mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}) } \]

whose composition is isomorphic to the identity and with $f_* = g^{-1}$. Moreover,

  1. for $\mathcal{F}' \in \textit{Ab}(S_{pro\text{-}\acute{e}tale}')$ we have $H^ p(S_{pro\text{-}\acute{e}tale}', \mathcal{F}') = H^ p(S_{pro\text{-}\acute{e}tale}, g^{-1}\mathcal{F}')$,

  2. for $\mathcal{F} \in \textit{Ab}(S_{pro\text{-}\acute{e}tale})$ we have

    \[ H^ p(S_{pro\text{-}\acute{e}tale}, \mathcal{F}) = H^ p(S_{pro\text{-}\acute{e}tale}', g_*\mathcal{F}) = H^ p(S_{pro\text{-}\acute{e}tale}', f^{-1}\mathcal{F}). \]

Proof. The inclusion functor is fully faithful and continuous. We have seen that $S_{pro\text{-}\acute{e}tale}$ and $S_{pro\text{-}\acute{e}tale}'$ have fibre products and final objects and that our functor commutes with these (Lemma 61.12.10). It follows from Lemma 61.31.1 that the inclusion functor is cocontinuous. Hence the existence of $f$ and $g$ follows from Sites, Lemma 7.21.8. The equality in (1) is Cohomology on Sites, Lemma 21.7.2. Part (2) follows from (1) as $\mathcal{F} = g^{-1}g_*\mathcal{F} = g^{-1}f^{-1}\mathcal{F}$. $\square$

Next, we prove a corresponding result for the big pro-étale topoi.

Lemma 61.31.3. Suppose given big sites $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ and $\mathit{Sch}'_{pro\text{-}\acute{e}tale}$ as in Definition 61.12.7. Assume that $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ is contained in $\mathit{Sch}'_{pro\text{-}\acute{e}tale}$. The inclusion functor $\mathit{Sch}_{pro\text{-}\acute{e}tale}\to \mathit{Sch}'_{pro\text{-}\acute{e}tale}$ satisfies the assumptions of Sites, Lemma 7.21.8. There are morphisms of topoi

\begin{eqnarray*} g : \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}_{pro\text{-}\acute{e}tale}) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}'_{pro\text{-}\acute{e}tale}) \\ f : \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}'_{pro\text{-}\acute{e}tale}) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}_{pro\text{-}\acute{e}tale}) \end{eqnarray*}

such that $f \circ g \cong \text{id}$. For any object $S$ of $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ the inclusion functor $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}'/S)_{pro\text{-}\acute{e}tale}$ satisfies the assumptions of Sites, Lemma 7.21.8 also. Hence similarly we obtain morphisms

\begin{eqnarray*} g : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}'/S)_{pro\text{-}\acute{e}tale}) \\ f : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}'/S)_{pro\text{-}\acute{e}tale}) & \longrightarrow & \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}) \end{eqnarray*}

with $f \circ g \cong \text{id}$.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 7.21.8 are immediate for the functors $\mathit{Sch}_{pro\text{-}\acute{e}tale}\to \mathit{Sch}'_{pro\text{-}\acute{e}tale}$ and $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}'/S)_{pro\text{-}\acute{e}tale}$. Property (a) holds by Lemma 61.31.1. Property (d) holds because fibre products in the categories $\mathit{Sch}_{pro\text{-}\acute{e}tale}$, $\mathit{Sch}'_{pro\text{-}\acute{e}tale}$ exist and are compatible with fibre products in the category of schemes. $\square$

Lemma 61.31.4. Let $S$ be a scheme. Let $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}$ and $(\mathit{Sch}'/S)_{pro\text{-}\acute{e}tale}$ be two big pro-étale sites of $S$ as in Definition 61.12.8. Assume that the first is contained in the second. In this case

  1. for any abelian sheaf $\mathcal{F}'$ defined on $(\mathit{Sch}'/S)_{pro\text{-}\acute{e}tale}$ and any object $U$ of $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}$ we have

    \[ H^ p(U, \mathcal{F}'|_{(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}}) = H^ p(U, \mathcal{F}') \]

    In words: the cohomology of $\mathcal{F}'$ over $U$ computed in the bigger site agrees with the cohomology of $\mathcal{F}'$ restricted to the smaller site over $U$.

  2. for any abelian sheaf $\mathcal{F}$ on $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}$ there is an abelian sheaf $\mathcal{F}'$ on $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}'$ whose restriction to $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}$ is isomorphic to $\mathcal{F}$.

Proof. By Lemma 61.31.3 the inclusion functor $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}'/S)_{pro\text{-}\acute{e}tale}$ satisfies the assumptions of Sites, Lemma 7.21.8. This implies (2) and (1) follows from Cohomology on Sites, Lemma 21.7.2. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F4R. Beware of the difference between the letter 'O' and the digit '0'.