Lemma 63.3.12. Consider a cartesian square

of schemes with $f$ separated and locally of finite type. For any abelian sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ we have $f'_!(g')^{-1}\mathcal{F} = g^{-1}f_!\mathcal{F}$.

Lemma 63.3.12. Consider a cartesian square

\[ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

of schemes with $f$ separated and locally of finite type. For any abelian sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ we have $f'_!(g')^{-1}\mathcal{F} = g^{-1}f_!\mathcal{F}$.

**Proof.**
In great generality there is a pullback map $g^{-1}f_*\mathcal{F} \to f'_*(g')^{-1}\mathcal{F}$, see Sites, Section 7.45. We claim that this map sends $g^{-1}f_!\mathcal{F}$ into the subsheaf $f'_!(g')^{-1}\mathcal{F}$ and induces the isomorphism in the lemma.

Choose a geometric point $\overline{y}': \mathop{\mathrm{Spec}}(k) \to Y'$ and denote $\overline{y} = g \circ \overline{y}'$ the image in $Y$. There is a commutative diagram

\[ \xymatrix{ (f_*\mathcal{F})_{\overline{y}} \ar[r] \ar[d] & H^0(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \ar[d] \\ (f'_*(g')^{-1}\mathcal{F})_{\overline{y}'} \ar[r] & H^0(X'_{\overline{y}'}, (g')^{-1}\mathcal{F}|_{X'_{\overline{y}'}}) } \]

where the horizontal maps were used in the proof of Lemma 63.3.11 and the vertical maps are the pullback maps above. The diagram commutes because each of the four maps in question is given by pulling back local sections along a morphism of schemes and the underlying diagram of morphisms of schemes commutes. Since the diagram in the statement of the lemma is cartesian we have $X'_{\overline{y}'} = X_{\overline{y}}$. Hence by Lemma 63.3.11 and its proof we obtain a commutative diagram

\[ \xymatrix{ (f_*\mathcal{F})_{\overline{y}} \ar[rrr] \ar[ddd] & & & H^0(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \ar[ddd] \\ & (f_!\mathcal{F})_{\overline{y}} \ar[r] \ar@{..>}[d] \ar[lu] & H^0_ c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \ar[d] \ar[ru] \\ & (f'_!(g')^{-1}\mathcal{F})_{\overline{y}'} \ar[r] \ar[ld] & H^0_ c(X'_{\overline{y}'}, (g')^{-1}\mathcal{F}|_{X'_{\overline{y}'}}) \ar[rd]\\ (f'_*(g')^{-1}\mathcal{F})_{\overline{y}'} \ar[rrr] & & & H^0(X'_{\overline{y}'}, (g')^{-1}\mathcal{F}|_{X'_{\overline{y}'}}) } \]

where the horizontal arrows of the inner square are isomorphisms and the two right vertical arrows are equalities. Also, the se, sw, ne, nw arrows are injective. It follows that there is a unique bijective dotted arrow fitting into the diagram. We conclude that $g^{-1}f_!\mathcal{F} \subset g^{-1}f_*\mathcal{F} \to f'_*(g')^{-1}\mathcal{F}$ is mapped into the subsheaf $f'_!(g')^{-1}\mathcal{F} \subset f'_*(g')^{-1}\mathcal{F}$ because this is true on stalks, see Étale Cohomology, Theorem 59.29.10. The same theorem then implies that the induced map is an isomorphism and the proof is complete. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)