Lemma 63.6.3. Let $f : X \to Y$ and $g : Y \to Z$ be separated and locally quasi-finite morphisms. There is a canonical isomorphism $(g \circ f)^! \to f^! \circ g^!$. Given a third locally quasi-finite morphism $h : Z \to T$ the diagram
commutes.
Lemma 63.6.3. Let $f : X \to Y$ and $g : Y \to Z$ be separated and locally quasi-finite morphisms. There is a canonical isomorphism $(g \circ f)^! \to f^! \circ g^!$. Given a third locally quasi-finite morphism $h : Z \to T$ the diagram
commutes.
Proof. By uniqueness of adjoint functors, this immediately translates into the corresponding (dual) statement for the functors $f_!$. See Lemma 63.4.12. $\square$
Comments (0)