Lemma 61.16.1. Let $X$ be a scheme. Let $\mathcal{F}$ be a presheaf of sets on $X_{pro\text{-}\acute{e}tale}$ which sends finite disjoint unions to products. Then $\mathcal{F}^\# (W) = \mathcal{F}(W)$ if $W$ is an affine weakly contractible object of $X_{pro\text{-}\acute{e}tale}$.

Proof. Recall that $\mathcal{F}^\#$ is equal to $(\mathcal{F}^+)^+$, see Sites, Theorem 7.10.10, where $\mathcal{F}^+$ is the presheaf which sends an object $U$ of $X_{pro\text{-}\acute{e}tale}$ to $\mathop{\mathrm{colim}}\nolimits H^0(\mathcal{U}, \mathcal{F})$ where the colimit is over all pro-étale coverings $\mathcal{U}$ of $U$. Thus it suffices to prove that (a) $\mathcal{F}^+$ sends finite disjoint unions to products and (b) sends $W$ to $\mathcal{F}(W)$. If $U = U_1 \amalg U_2$, then given a pro-étale covering $\mathcal{U} = \{ f_ j : V_ j \to U\}$ of $U$ we obtain pro-étale coverings $\mathcal{U}_ i = \{ f_ j^{-1}(U_ i) \to U_ i\}$ and we clearly have

$H^0(\mathcal{U}, \mathcal{F}) = H^0(\mathcal{U}_1, \mathcal{F}) \times H^0(\mathcal{U}_2, \mathcal{F})$

because $\mathcal{F}$ sends finite disjoint unions to products (this includes the condition that $\mathcal{F}$ sends the empty scheme to the singleton). This proves (a). Finally, any pro-étale covering of $W$ can be refined by a finite disjoint union decomposition $W = W_1 \amalg \ldots W_ n$ by Lemma 61.13.2. Hence $\mathcal{F}^+(W) = \mathcal{F}(W)$ exactly because the value of $\mathcal{F}$ on $W$ is the product of the values of $\mathcal{F}$ on the $W_ j$. This proves (b). $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).