Lemma 61.17.1. Let $S$ be a scheme. Let $T$ be an object of $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}$.

1. If $\mathcal{I}$ is injective in $\textit{Ab}((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale})$, then

1. $i_ f^{-1}\mathcal{I}$ is injective in $\textit{Ab}(T_{pro\text{-}\acute{e}tale})$,

2. $\mathcal{I}|_{S_{pro\text{-}\acute{e}tale}}$ is injective in $\textit{Ab}(S_{pro\text{-}\acute{e}tale})$,

2. If $\mathcal{I}^\bullet$ is a K-injective complex in $\textit{Ab}((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale})$, then

1. $i_ f^{-1}\mathcal{I}^\bullet$ is a K-injective complex in $\textit{Ab}(T_{pro\text{-}\acute{e}tale})$,

2. $\mathcal{I}^\bullet |_{S_{pro\text{-}\acute{e}tale}}$ is a K-injective complex in $\textit{Ab}(S_{pro\text{-}\acute{e}tale})$,

Proof. Proof of (1)(a) and (2)(a): $i_ f^{-1}$ is a right adjoint of an exact functor $i_{f, !}$. Namely, recall that $i_ f$ corresponds to a cocontinuous functor $u : T_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}$ which is continuous and commutes with fibre products and equalizers, see Lemma 61.12.12 and its proof. Hence we obtain $i_{f, !}$ by Modules on Sites, Lemma 18.16.2. It is shown in Modules on Sites, Lemma 18.16.3 that it is exact. Then we conclude (1)(a) and (2)(a) hold by Homology, Lemma 12.29.1 and Derived Categories, Lemma 13.31.9.

Parts (1)(b) and (2)(b) are special cases of (1)(a) and (2)(a) as $i_ S = i_{\text{id}_ S}$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).