61.17 Comparing big and small topoi
This section is the analogue of Étale Cohomology, Section 59.99. In the following we will often denote \mathcal{F} \mapsto \mathcal{F}|_{S_{pro\text{-}\acute{e}tale}} the pullback functor i_ S^{-1} corresponding to the morphism of topoi i_ S : \mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}) of Lemma 61.12.13.
Lemma 61.17.1. Let S be a scheme. Let T be an object of (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}.
If \mathcal{I} is injective in \textit{Ab}((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}), then
i_ f^{-1}\mathcal{I} is injective in \textit{Ab}(T_{pro\text{-}\acute{e}tale}),
\mathcal{I}|_{S_{pro\text{-}\acute{e}tale}} is injective in \textit{Ab}(S_{pro\text{-}\acute{e}tale}),
If \mathcal{I}^\bullet is a K-injective complex in \textit{Ab}((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}), then
i_ f^{-1}\mathcal{I}^\bullet is a K-injective complex in \textit{Ab}(T_{pro\text{-}\acute{e}tale}),
\mathcal{I}^\bullet |_{S_{pro\text{-}\acute{e}tale}} is a K-injective complex in \textit{Ab}(S_{pro\text{-}\acute{e}tale}),
Proof.
Proof of (1)(a) and (2)(a): i_ f^{-1} is a right adjoint of an exact functor i_{f, !}. Namely, recall that i_ f corresponds to a cocontinuous functor u : T_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale} which is continuous and commutes with fibre products and equalizers, see Lemma 61.12.12 and its proof. Hence we obtain i_{f, !} by Modules on Sites, Lemma 18.16.2. It is shown in Modules on Sites, Lemma 18.16.3 that it is exact. Then we conclude (1)(a) and (2)(a) hold by Homology, Lemma 12.29.1 and Derived Categories, Lemma 13.31.9.
Parts (1)(b) and (2)(b) are special cases of (1)(a) and (2)(a) as i_ S = i_{\text{id}_ S}.
\square
Lemma 61.17.2. Let f : T \to S be a morphism of schemes. For K in D((\mathit{Sch}/T)_{pro\text{-}\acute{e}tale}) we have
(Rf_{big, *}K)|_{S_{pro\text{-}\acute{e}tale}} = Rf_{small, *}(K|_{T_{pro\text{-}\acute{e}tale}})
in D(S_{pro\text{-}\acute{e}tale}). More generally, let S' \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}) with structure morphism g : S' \to S. Consider the fibre product
\xymatrix{ T' \ar[r]_{g'} \ar[d]_{f'} & T \ar[d]^ f \\ S' \ar[r]^ g & S }
Then for K in D((\mathit{Sch}/T)_{pro\text{-}\acute{e}tale}) we have
i_ g^{-1}(Rf_{big, *}K) = Rf'_{small, *}(i_{g'}^{-1}K)
in D(S'_{pro\text{-}\acute{e}tale}) and
g_{big}^{-1}(Rf_{big, *}K) = Rf'_{big, *}((g'_{big})^{-1}K)
in D((\mathit{Sch}/S')_{pro\text{-}\acute{e}tale}).
Proof.
The first equality follows from Lemma 61.17.1 and (61.12.16.1) on choosing a K-injective complex of abelian sheaves representing K. The second equality follows from Lemma 61.17.1 and Lemma 61.12.18 on choosing a K-injective complex of abelian sheaves representing K. The third equality follows similarly from Cohomology on Sites, Lemmas 21.7.1 and 21.20.1 and Lemma 61.12.18 on choosing a K-injective complex of abelian sheaves representing K.
\square
Let S be a scheme and let \mathcal{H} be an abelian sheaf on (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}. Recall that H^ n_{pro\text{-}\acute{e}tale}(U, \mathcal{H}) denotes the cohomology of \mathcal{H} over an object U of (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}.
Lemma 61.17.3. Let f : T \to S be a morphism of schemes. For K in D(S_{pro\text{-}\acute{e}tale}) we have
H^ n_{pro\text{-}\acute{e}tale}(S, \pi _ S^{-1}K) = H^ n(S_{pro\text{-}\acute{e}tale}, K)
and
H^ n_{pro\text{-}\acute{e}tale}(T, \pi _ S^{-1}K) = H^ n(T_{pro\text{-}\acute{e}tale}, f_{small}^{-1}K).
For M in D((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}) we have
H^ n_{pro\text{-}\acute{e}tale}(T, M) = H^ n(T_{pro\text{-}\acute{e}tale}, i_ f^{-1}M).
Proof.
To prove the last equality represent M by a K-injective complex of abelian sheaves and apply Lemma 61.17.1 and work out the definitions. The second equality follows from this as i_ f^{-1} \circ \pi _ S^{-1} = f_{small}^{-1}. The first equality is a special case of the second one.
\square
Lemma 61.17.4. Let S be a scheme. For K \in D(S_{pro\text{-}\acute{e}tale}) the map
K \longrightarrow R\pi _{S, *}\pi _ S^{-1}K
is an isomorphism.
Proof.
This is true because both \pi _ S^{-1} and \pi _{S, *} = i_ S^{-1} are exact functors and the composition \pi _{S, *} \circ \pi _ S^{-1} is the identity functor.
\square
Comments (0)