Lemma 63.9.1. Let $f : X \to Y$ be a finite type separated morphism of quasi-compact and quasi-separated schemes. The functors $Rf_!$ constructed above are, up to canonical isomorphism, independent of the choice of the compactification.

**Proof.**
We will prove this for the functor $Rf_! : D(X_{\acute{e}tale}, \Lambda ) \to D(Y_{\acute{e}tale}, \Lambda )$ when $\Lambda $ is a torsion ring; the case of the functor $Rf_! : D^+_{tors}(X_{\acute{e}tale}, \Lambda ) \to D^+_{tors}(Y_{\acute{e}tale}, \Lambda )$ is proved in exactly the same way.

Consider the category of compactifications of $X$ over $Y$, which is cofiltered according to More on Flatness, Theorem 38.33.8 and Lemmas 38.32.1 and 38.32.2. To every choice of a compactification

the construction above associates the functor $R\overline{f}_* \circ j_! : D(X_{\acute{e}tale}, \Lambda ) \to D(Y_{\acute{e}tale}, \Lambda )$. Let's be a little more explicit. Given a complex $\mathcal{K}^\bullet $ of sheaves of $\Lambda $-modules on $X_{\acute{e}tale}$, we choose a quasi-isomorphism $j_!\mathcal{K}^\bullet \to \mathcal{I}^\bullet $ into a K-injective complex of sheaves of $\Lambda $-modules on $\overline{X}_{\acute{e}tale}$. Then our functor sends $\mathcal{K}^\bullet $ to $\overline{f}_*\mathcal{I}^\bullet $.

Suppose given a morphism $g : \overline{X}_1 \to \overline{X}_2$ between compactifications $j_ i : X \to \overline{X}_ i$ over $Y$. Then we get an isomorphism

using Lemma 63.8.6 in the first equality.

To finish the proof, since the category of compactifications of $X$ over $Y$ is cofiltered, it suffices to show compositions of morphisms of compactifications of $X$ over $Y$ are turned into compositions of isomorphisms of functors^{1}. To do this, suppose that $j_3 : X \to \overline{X}_3$ is a third compactification and that $h : \overline{X}_2 \to \overline{X}_3$ is a morphism of compactifications. Then we have to show that the composition

is equal to the isomorphism of functors constructed using simply $j_3$, $g \circ h$, and $j_1$. A calculation shows that it suffices to prove that the composition of the maps

of Lemma 63.8.6 agrees with the corresponding map $j_{3, !} \to R(h \circ g)_* \circ j_{1, !}$ via the identification $R(h \circ g)_* = Rh_* \circ Rg_*$. Since the map of Lemma 63.8.6 is a special case of the map of Lemma 63.8.1 (as $j_1$ and $j_2$ are separated) this follows immediately from Lemma 63.8.2. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: