The Stacks project

62.9 Derived lower shriek via compactifications

Let $f : X \to Y$ be a finite type separated morphism of schemes with $Y$ quasi-compact and quasi-separated. Choose a compactification $j : X \to \overline{X}$ over $Y$, see More on Flatness, Theorem 38.33.8. Let $\Lambda $ be a ring. Denote $D^+_{tors}(X_{\acute{e}tale}, \Lambda )$ the strictly full saturated triangulated subcategory of $D(X_{\acute{e}tale}, \Lambda )$ consisting of objects $K$ which are bounded below and whose cohomology sheaves are torsion. We will consider the functor

\[ Rf_! = R\overline{f}_* \circ j_! : D^+_{tors}(X_{\acute{e}tale}, \Lambda ) \longrightarrow D^+_{tors}(Y_{\acute{e}tale}, \Lambda ) \]

This makes sense: the functor $j_!$ sends $D^+_{tors}(X_{\acute{e}tale}, \Lambda )$ into $D^+_{tors}(\overline{X}_{\acute{e}tale}, \Lambda )$ by Remark 62.7.2 and $R\overline{f}_*$ sends $D^+_{tors}(\overline{X}_{\acute{e}tale}, \Lambda )$ into $D^+_{tors}(Y_{\acute{e}tale}, \Lambda )$ by Étale Cohomology, Lemma 59.78.2. If $\Lambda $ is a torsion ring, then we define

\[ Rf_! = R\overline{f}_* \circ j_! : D(X_{\acute{e}tale}, \Lambda ) \longrightarrow D(Y_{\acute{e}tale}, \Lambda ) \]

Here is the obligatory lemma.

Lemma 62.9.1. Let $f : X \to Y$ be a finite type separated morphism of quasi-compact and quasi-separated schemes. The functors $Rf_!$ constructed above are, up to canonical isomorphism, independent of the choice of the compactification.

Proof. We will prove this for the functor $Rf_! : D(X_{\acute{e}tale}, \Lambda ) \to D(Y_{\acute{e}tale}, \Lambda )$ when $\Lambda $ is a torsion ring; the case of the functor $Rf_! : D^+_{tors}(X_{\acute{e}tale}, \Lambda ) \to D^+_{tors}(Y_{\acute{e}tale}, \Lambda )$ is proved in exactly the same way.

Consider the category of compactifications of $X$ over $Y$, which is cofiltered according to More on Flatness, Theorem 38.33.8 and Lemmas 38.32.1 and 38.32.2. To every choice of a compactification

\[ j : X \to \overline{X},\quad \overline{f} : \overline{X} \to Y \]

the construction above associates the functor $R\overline{f}_* \circ j_! : D(X_{\acute{e}tale}, \Lambda ) \to D(Y_{\acute{e}tale}, \Lambda )$. Let's be a little more explicit. Given a complex $\mathcal{K}^\bullet $ of sheaves of $\Lambda $-modules on $X_{\acute{e}tale}$, we choose a quasi-isomorphism $j_!\mathcal{K}^\bullet \to \mathcal{I}^\bullet $ into a K-injective complex of sheaves of $\Lambda $-modules on $\overline{X}_{\acute{e}tale}$. Then our functor sends $\mathcal{K}^\bullet $ to $\overline{f}_*\mathcal{I}^\bullet $.

Suppose given a morphism $g : \overline{X}_1 \to \overline{X}_2$ between compactifications $j_ i : X \to \overline{X}_ i$ over $Y$. Then we get an isomorphism

\[ R\overline{f}_{2, *} \circ j_{2, !} = R\overline{f}_{2, *} \circ Rg_* \circ j_{1, !} = R\overline{f}_{1, *} \circ j_{1, !} \]

using Lemma 62.8.6 in the first equality.

To finish the proof, since the category of compactifications of $X$ over $Y$ is cofiltered, it suffices to show compositions of morphisms of compactifications of $X$ over $Y$ are turned into compositions of isomorphisms of functors1. To do this, suppose that $j_3 : X \to \overline{X}_3$ is a third compactification and that $h : \overline{X}_2 \to \overline{X}_3$ is a morphism of compactifications. Then we have to show that the composition

\[ R\overline{f}_{3, *} \circ j_{3, !} = R\overline{f}_{3, *} \circ Rh_* \circ j_{2, !} = R\overline{f}_{2, *} \circ j_{2, !} = R\overline{f}_{2, *} \circ Rg_* \circ j_{1, !} = R\overline{f}_{1, *} \circ j_{1, !} \]

is equal to the isomorphism of functors constructed using simply $j_3$, $g \circ h$, and $j_1$. A calculation shows that it suffices to prove that the composition of the maps

\[ j_{3, !} \to Rh_* \circ j_{2, !} \to Rh_* \circ Rg_* \circ j_{1, !} \]

of Lemma 62.8.6 agrees with the corresponding map $j_{3, !} \to R(h \circ g)_* \circ j_{1, !}$ via the identification $R(h \circ g)_* = Rh_* \circ Rg_*$. Since the map of Lemma 62.8.6 is a special case of the map of Lemma 62.8.1 (as $j_1$ and $j_2$ are separated) this follows immediately from Lemma 62.8.2. $\square$

Lemma 62.9.2. Let $f : X \to Y$ and $g : Y \to Z$ be separated morphisms of finite type of quasi-compact and quasi-separated schemes. Then there is a canonical isomorphism $Rg_! \circ Rf_! \to R(g \circ f)_!$.

Proof. Choose a compactification $i : Y \to \overline{Y}$ of $Y$ over $Z$. Choose a compactification $X \to \overline{X}$ of $X$ over $\overline{Y}$. This uses More on Flatness, Theorem 38.33.8 and Lemma 38.32.2 twice. Let $U$ be the inverse image of $Y$ in $\overline{X}$ so that we get the commutative diagram

\[ \xymatrix{ X \ar[r]_ j \ar[d]_ f & U \ar[dl]^{f'} \ar[r]_{j'} & \overline{X} \ar[dl]^{\overline{f}} \\ Y \ar[r]_ i \ar[d]_ g & \overline{Y} \ar[dl]^{\overline{g}} \\ Z } \]

Then we have

\begin{align*} R(g \circ f)_! & = R(\overline{g} \circ \overline{f})_* \circ (j' \circ j)_! \\ & = R\overline{g}_* \circ R\overline{f}_* \circ j'_! \circ j_! \\ & = R\overline{g}_* \circ i_! \circ Rf'_* \circ j_! \\ & = Rg_! \circ Rf_! \end{align*}

The first equality is the definition of $R(g \circ f)_!$. The second equality uses the identifications $R(\overline{g} \circ \overline{f})_* = R\overline{g}_* \circ R\overline{f}_*$ and $(j' \circ j)_! = j'_! \circ j_!$ of Lemma 62.3.13. The identification $i_! \circ Rf'_* \to R\overline{f}_* \circ j_!$ used in the third equality is Lemma 62.8.1. The final fourth equality is the definition of $Rg_!$ and $Rf_!$. To finish the proof we show that this isomorphism is independent of choices made.

Suppose we have two diagrams

\[ \vcenter { \xymatrix{ X \ar[r]_{j_1} \ar[d] & U_1 \ar[dl]^{f_1} \ar[r]_{j'_1} & \overline{X}_1 \ar[dl]^{\overline{f}_1} \\ Y \ar[r]_{i_1} \ar[d] & \overline{Y}_1 \ar[dl]^{\overline{g}_1} \\ Z } } \quad \text{and}\quad \vcenter { \xymatrix{ X \ar[r]_{j_2} \ar[d] & U_2 \ar[dl]^{f_2} \ar[r]_{j'_2} & \overline{X}_2 \ar[dl]^{\overline{f}_2} \\ Y \ar[r]_{i_2} \ar[d] & \overline{Y}_2 \ar[dl]^{\overline{g}_2} \\ Z } } \]

We can first choose a compactification $i : Y \to \overline{Y}$ of $Y$ over $Z$ which dominates both $\overline{Y}_1$ and $\overline{Y}_2$, see More on Flatness, Lemma 38.32.1. By More on Flatness, Lemma 38.32.3 and Categories, Lemmas 4.27.13 and 4.27.14 we can choose a compactification $X \to \overline{X}$ of $X$ over $\overline{Y}$ with morphisms $\overline{X} \to \overline{X}_1$ and $\overline{X} \to \overline{X}_2$ and such that the composition $\overline{X} \to \overline{Y} \to \overline{Y}_1$ is equal to the composition $\overline{X} \to \overline{X}_1 \to \overline{Y}_1$ and such that the composition $\overline{X} \to \overline{Y} \to \overline{Y}_2$ is equal to the composition $\overline{X} \to \overline{X}_2 \to \overline{Y}_2$. Thus we see that it suffices to compare the maps determined by our diagrams when we have a commutative diagram as follows

\[ \xymatrix{ X \ar[rr]_{j_1} \ar@{=}[d] & & U_1 \ar[d]^{h'} \ar[ddll] \ar[rr]_{j'_1} & & \overline{X}_1 \ar[d]^ h \ar[ddll] \\ X \ar '[r][rr]^-{j_2} \ar[d] & & U_2 \ar '[dl][ddll] \ar '[r][rr]^-{j'_2} & & \overline{X}_2 \ar[ddll] \\ Y \ar[rr]^{i_1} \ar@{=}[d] & & \overline{Y}_1 \ar[d]^ k \\ Y \ar[rr]^{i_2} \ar[d] & & \overline{Y}_2 \ar[dll] \\ Z } \]

Each of the squares

\[ \xymatrix{ X \ar[r]_{j_1} \ar[d]_{\text{id}} \ar@{}[dr]|A & U_1 \ar[d]^{h'} \\ X \ar[r]^{j_2} & U_2 } \quad \xymatrix{ U_2 \ar[r]_{j_2'} \ar[d]_{f_2} \ar@{}[dr]|B & \overline{X}_2 \ar[d]^{\overline{f}_2} \\ Y \ar[r]^{i_2} & \overline{Y}_2 } \quad \xymatrix{ U_1 \ar[r]_{j_1'} \ar[d]_{f_1} \ar@{}[dr]|C & \overline{X}_1 \ar[d]^{\overline{f}_1} \\ Y \ar[r]^{i_1} & \overline{Y}_1 } \quad \xymatrix{ Y \ar[r]_{i_1} \ar[d]_{\text{id}} \ar@{}[dr]|D & \overline{Y}_1 \ar[d]^ k \\ Y \ar[r]^{i_2} & \overline{Y}_2 } \quad \xymatrix{ X \ar[r]_{j_1' \circ j_1} \ar[d]_{\text{id}} \ar@{}[dr]|E & \overline{X}_1 \ar[d]^ h \\ X \ar[r]^{j_2} & \overline{X}_2 } \]

gives rise to an isomorphism as follows

\begin{align*} \gamma _ A & : j_{2, !} \to Rh'_* \circ j_{1, !} \\ \gamma _ B & : i_{2, !} \circ Rf_{2, *} \to R\overline{f}_{2, *} \circ j'_{2, !} \\ \gamma _ C & : i_{1, !} \circ Rf_{1, *} \to R\overline{f}_{1, *} \circ j'_{1, !} \\ \gamma _ D & : i_{2, !} \to Rk_* \circ i_{1, !} \\ \gamma _ E & : j_{2, !} \to Rh_* \circ (j'_1 \circ j_1)_! \end{align*}

by applying the map from Lemma 62.8.1 (which is the same as the map in Lemma 62.8.6 in case the left vertical arrow is the identity). Let us write

\begin{align*} F_1 & = Rf_{1, *} \circ j_{1, !} \\ F_2 & = Rf_{2, *} \circ j_{2, !} \\ G_1 & = R\overline{g}_{1, *} \circ i_{1, !} \\ G_2 & = R\overline{g}_{2, *} \circ i_{2, !} \\ C_1 & = R(\overline{g}_1 \circ \overline{f}_1)_* \circ (j'_1 \circ j_1)_! \\ C_2 & = R(\overline{g}_2 \circ \overline{f}_2)_* \circ (j'_2 \circ j_2)_! \end{align*}

The construction given in the first paragraph of the proof and in Lemma 62.9.1 uses

  1. $\gamma _ C$ for the map $G_1 \circ F_1 \to C_1$,

  2. $\gamma _ B$ for the map $G_2 \circ F_2 \to C_2 $,

  3. $\gamma _ A$ for the map $F_2 \to F_1$,

  4. $\gamma _ D$ for the map $G_2 \to G_1$, and

  5. $\gamma _ E$ for the map $C_2 \to C_1$.

This implies that we have to show that the diagram

\[ \xymatrix{ C_2 \ar[rr]_{\gamma _ E} & & C_1 \\ G_2 \circ F_2 \ar[rr]^{\gamma _ D \circ \gamma _ A} \ar[u]^{\gamma _ B} & & G_1 \circ F_1 \ar[u]_{\gamma _ C} } \]

is commutative. We will use Lemmas 62.8.2 and 62.8.3 and with (abuse of) notation as in Remark 62.8.4 (in particular dropping $\star $ products with identity transformations from the notation). We can write $\gamma _ E = \gamma _ F \circ \gamma _ A$ where

\[ \xymatrix{ U_1 \ar[r]_{j'_1} \ar[d]_{h'} \ar@{}[rd]|F & \overline{X}_1 \ar[d]^ h \\ U_2 \ar[r]^{j'_2} & \overline{X}_2 } \]

Thus we see that

\[ \gamma _ E \circ \gamma _ B = \gamma _ F \circ \gamma _ A \circ \gamma _ B = \gamma _ F \circ \gamma _ B \circ \gamma _ A \]

the last equality because the two squares $A$ and $B$ only intersect in one point (similar to the last argument in Remark 62.8.4). Thus it suffices to prove that $\gamma _ C \circ \gamma _ D = \gamma _ F \circ \gamma _ B$. Since both of these are equal to the map for the square

\[ \xymatrix{ U_1 \ar[r] \ar[d] & \overline{X}_1 \ar[d] \\ Y \ar[r] & \overline{Y}_2 } \]

we conclude. $\square$

Lemma 62.9.3. Let $f : X \to Y$, $g : Y \to Z$, $h : Z \to T$ be separated morphisms of finite type of quasi-compact and quasi-separated schemes. Then the diagram

\[ \xymatrix{ Rh_! \circ Rg_! \circ Rf_! \ar[r]_{\gamma _ C} \ar[d]^{\gamma _ A} & R(h \circ g)_! \circ Rf_! \ar[d]_{\gamma _{A + B}} \\ Rh_! \circ R(g \circ f)_! \ar[r]^{\gamma _{B + C}} & R(h \circ g \circ f)_! } \]

of isomorphisms of Lemma 62.9.2 commutes (for the meaning of the $\gamma $'s see proof).

Proof. To do this we choose a compactification $\overline{Z}$ of $Z$ over $T$, then a compactification $\overline{Y}$ of $Y$ over $\overline{Z}$, and then a compactification $\overline{X}$ of $X$ over $\overline{Y}$. This uses More on Flatness, Theorem 38.33.8 and Lemma 38.32.2. Let $W \subset \overline{Y}$ be the inverse image of $Z$ under $\overline{Y} \to \overline{Z}$ and let $U \subset V \subset \overline{X}$ be the inverse images of $Y \subset W$ under $\overline{X} \to \overline{Y}$. This produces the following diagram

\[ \xymatrix{ X \ar[d]_ f \ar[r] & U \ar[r] \ar[d] \ar@{}[dr]|A & V \ar[d] \ar[r] \ar@{}[rd]|B & \overline{X} \ar[d] \\ Y \ar[d]_ g \ar[r] & Y \ar[r] \ar[d] & W \ar[r] \ar[d] \ar@{}[rd]|C & \overline{Y} \ar[d] \\ Z \ar[d]_ h \ar[r] & Z \ar[d] \ar[r] & Z \ar[d] \ar[r] & \overline{Z} \ar[d] \\ T \ar[r] & T \ar[r] & T \ar[r] & T } \]

Without introducing tons of notation but arguing exactly as in the proof of Lemma 62.9.2 we see that the maps in the first displayed diagram use the maps of Lemma 62.8.1 for the rectangles $A + B$, $B + C$, $A$, and $C$ as indicated in the diagram in the statement of the lemma. Since by Lemmas 62.8.2 and 62.8.3 we have $\gamma _{A + B} = \gamma _ B \circ \gamma _ A$ and $\gamma _{B + C} = \gamma _ B \circ \gamma _ C$ we conclude that the desired equality holds provided $\gamma _ A \circ \gamma _ C = \gamma _ C \circ \gamma _ A$. This is true because the two squares $A$ and $C$ only intersect in one point (similar to the last argument in Remark 62.8.4). $\square$

Lemma 62.9.4. Consider a cartesian square

\[ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

of quasi-compact and quasi-separated schemes with $f$ separated and of finite type. Then there is a canonical isomorphism

\[ g^{-1} \circ Rf_! \to Rf'_! \circ (g')^{-1} \]

Moreover, these isomorphisms are compatible with the isomorphisms of Lemma 62.9.2.

Proof. Choose a compactification $j : X \to \overline{X}$ over $Y$ and denote $\overline{f} : \overline{X} \to Y$ the structure morphism. Let $j' : X' \to \overline{X}'$ and $\overline{f}' : \overline{X}' \to Y'$ denote the base changes of $j$ and $\overline{f}$. Since $Rf_! = R\overline{f}_* \circ j_!$ and $Rf'_! = R\overline{f}'_* \circ j'_!$ the isomorphism can be constructed via

\[ g^{-1} \circ R\overline{f}_* \circ j_! \to R\overline{f}'_* \circ (\overline{g}')^{-1} \circ j_! \to R\overline{f}'_* \circ j'_! \circ (g')^{-1} \]

where the first arrow is the isomorphism given to us by the proper base change theorem (Étale Cohomology, Lemma 59.91.12 in the bounded below torsion case and Étale Cohomology, Lemma 59.92.3 in the case that $\Lambda $ is torsion) and the second arrow is the isomorphism of Lemma 62.3.12.

To finish the proof we have to show two things: first we have to show that the isomorphism of functors so obtained does not depend on the choice of the compactification and second we have to show that if we vertically stack two base change diagrams as in the lemma, then these base change isomorphisms are compatible with the isomorphisms of Lemma 62.9.2. A straightforward argument which we omit shows that both follow if we can show that the isomorphisms

  1. $Rg_* \circ Rf_* = R(g \circ f)_*$ for $f : X \to Y$ and $g : Y \to Z$ proper,

  2. $g_! \circ f_! = (g \circ f)_!$ for $f : X \to Y$ and $g : Y \to Z$ separated and quasi-finite, and

  3. $g_! \circ Rf'_* = Rf_* \circ g'_!$ for $f : X \to Y$ and $f' : X' \to Y'$ proper and $g : Y' \to Y$ and $g' : X' \to X$ separated and quasi-finite with $f \circ g' = g \circ f'$

are compatible with base change. This holds for (1) by Cohomology on Sites, Remark 21.19.4, for (2) by Remark 62.3.14, and (3) by Lemma 62.8.5. $\square$

[1] Namely, if $\alpha , \beta : F \to G$ are morphisms of functors and $\gamma : G \to H$ is an isomorphism of functors such that $\gamma \circ \alpha = \gamma \circ \beta $, then we conclude $\alpha = \beta $.

Comments (2)

Comment #6677 by min on

Are the lower stars missing from R\bar{f} in the first paragraph of the proof of 0F7L?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F7H. Beware of the difference between the letter 'O' and the digit '0'.