Lemma 38.42.1. Let $X$ be a scheme. Let $D \subset X$ be an effective Cartier divisor with ideal sheaf $\mathcal{I} \subset \mathcal{O}_ X$. Let $\mathcal{F}^\bullet $ be a complex of quasi-coherent $\mathcal{O}_ X$-modules such that $\mathcal{F}^ i$ is $\mathcal{I}$-torsion free for all $i$. Then $\eta _\mathcal {I}\mathcal{F}^\bullet $ is a complex of quasi-coherent $\mathcal{O}_ X$-modules. Moreover, if $U = \mathop{\mathrm{Spec}}(A) \subset X$ is affine open and $D \cap U = V(f)$, then $\eta _ f(\mathcal{F}^\bullet (U))$ is canonically isomorphic to $(\eta _\mathcal {I}\mathcal{F}^\bullet )(U)$.

**Proof.**
Omitted.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)