Lemma 38.42.1. Let X be a scheme. Let D \subset X be an effective Cartier divisor with ideal sheaf \mathcal{I} \subset \mathcal{O}_ X. Let \mathcal{F}^\bullet be a complex of quasi-coherent \mathcal{O}_ X-modules such that \mathcal{F}^ i is \mathcal{I}-torsion free for all i. Then \eta _\mathcal {I}\mathcal{F}^\bullet is a complex of quasi-coherent \mathcal{O}_ X-modules. Moreover, if U = \mathop{\mathrm{Spec}}(A) \subset X is affine open and D \cap U = V(f), then \eta _ f(\mathcal{F}^\bullet (U)) is canonically isomorphic to (\eta _\mathcal {I}\mathcal{F}^\bullet )(U).
Proof. Omitted. \square
Comments (0)