Lemma 38.42.1. Let $X$ be a scheme. Let $D \subset X$ be an effective Cartier divisor with ideal sheaf $\mathcal{I} \subset \mathcal{O}_ X$. Let $\mathcal{F}^\bullet $ be a complex of quasi-coherent $\mathcal{O}_ X$-modules such that $\mathcal{F}^ i$ is $\mathcal{I}$-torsion free for all $i$. Then $\eta _\mathcal {I}\mathcal{F}^\bullet $ is a complex of quasi-coherent $\mathcal{O}_ X$-modules. Moreover, if $U = \mathop{\mathrm{Spec}}(A) \subset X$ is affine open and $D \cap U = V(f)$, then $\eta _ f(\mathcal{F}^\bullet (U))$ is canonically isomorphic to $(\eta _\mathcal {I}\mathcal{F}^\bullet )(U)$.
38.42 An operator introduced by Berthelot and Ogus
Please read Cohomology, Section 20.55 first.
Let $X$ be a scheme. Let $D \subset X$ be an effective Cartier divisor. Let $\mathcal{I} = \mathcal{I}_ D \subset \mathcal{O}_ X$ be the ideal sheaf of $D$, see Divisors, Section 31.14. Clearly we can apply the discussion in Cohomology, Section 20.55 to $X$ and $\mathcal{I}$.
Proof. Omitted. $\square$
Lemma 38.42.2. Let $X$ be a scheme. Let $D \subset X$ be an effective Cartier divisor with ideal sheaf $\mathcal{I} \subset \mathcal{O}_ X$. The functor $L\eta _\mathcal {I} : D(\mathcal{O}_ X) \to D(\mathcal{O}_ X)$ of Cohomology, Lemma 20.55.7 sends $D_\mathit{QCoh}(\mathcal{O}_ X)$ into itself. Moreover, if $X = \mathop{\mathrm{Spec}}(A)$ is affine and $D = V(f)$, then the functor $L\eta _ f$ on $D(A)$ defined in More on Algebra, Lemma 15.95.4 and the functor $L\eta _\mathcal {I}$ on $D_\mathit{QCoh}(\mathcal{O}_ X)$ correspond via the equivalence of Derived Categories of Schemes, Lemma 36.3.5.
Proof. Omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)