Lemma 42.50.9. In Lemma 42.47.1 say E_2 is the restriction of a perfect E \in D(\mathcal{O}_ X) whose restriction to X_1 is zero, resp. isomorphic to a finite locally free \mathcal{O}_{X_1}-module of rank < p sitting in cohomological degree 0. Then the class P'_ p(E_2), resp. c'_ p(E_2) of Lemma 42.47.1 agrees with P_ p(X_2 \to X, E), resp. c_ p(X_2 \to X, E) of Definition 42.50.3 provided E satisfies assumption (3) of Situation 42.50.1.
Proof. The assumptions on E imply that there is an open U \subset X containing X_1 such that E|_ U is zero, resp. isomorphic to a finite locally free \mathcal{O}_ U-module of rank < p. See More on Algebra, Lemma 15.75.7. Let Z \subset X be the complement of U in X endowed with the reduced induced closed subscheme structure. Then P_ p(X_2 \to X, E) = (Z \to X_2)_* \circ P_ p(Z \to X, E), resp. c_ p(X_2 \to X, E) = (Z \to X_2)_* \circ c_ p(Z \to X, E) by Lemma 42.50.8. Now we can prove that P_ p(X_2 \to X, E), resp. c_ p(X_2 \to X, E) satisfies the characterization of P'_ p(E_2), resp. c'_ p(E_2) given in Lemma 42.47.1. Namely, by the relation P_ p(X_2 \to X, E) = (Z \to X_2)_* \circ P_ p(Z \to X, E), resp. c_ p(X_2 \to X, E) = (Z \to X_2)_* \circ c_ p(Z \to X, E) just proven and the fact that X_1 \cap Z = \emptyset , the composition P_ p(X_2 \to X, E) \circ i_{1, *}, resp. c_ p(X_2 \to X, E) \circ i_{1, *} is zero by Lemma 42.50.7. On the other hand, P_ p(X_2 \to X, E) \circ i_{2, *} = P_ p(E_2), resp. c_ p(X_2 \to X, E) \circ i_{2, *} = c_ p(E_2) by Lemma 42.50.6. \square
Comments (0)