Lemma 45.8.2. Let K/k be an algebraic field extension. Let X be a finite type scheme over k. Then \mathop{\mathrm{CH}}\nolimits _ i(X_ K) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{CH}}\nolimits _ i(X_{k'}) where the colimit is over the subextensions K/k'/k with k'/k finite.
Proof. This is a special case of Chow Homology, Lemma 42.67.10. \square
Comments (0)