Lemma 45.10.1. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). Let $X, Y$ be nonempty smooth projective schemes both equidimensional of dimension $d$ over $k$. Then $\int _{X \amalg Y} = \int _ X + \int _ Y$.
Proof. Denote $i : X \to X \amalg Y$ and $j : Y \to X \amalg Y$ be the coprojections. By Lemma 45.9.9 the map $(i^*, j^*) : H^*(X \amalg Y) \to H^*(X) \times H^*(Y)$ is an isomorphism. The statement of the lemma means that under the isomorphism $(i^*, j^*) : H^{2d}(X \amalg Y)(d) \to H^{2d}(X)(d) \oplus H^{2d}(Y)(d)$ the map $\int _ X + \int _ Y$ is transformed into $\int _{X \amalg Y}$. This is true because
where the equality $a = i_*(i^*a) + j_*(j^*a)$ was shown in the proof of Lemma 45.9.9. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)