The Stacks project

Lemma 45.10.1. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). Let $X, Y$ be nonempty smooth projective schemes both equidimensional of dimension $d$ over $k$. Then $\int _{X \amalg Y} = \int _ X + \int _ Y$.

Proof. Denote $i : X \to X \amalg Y$ and $j : Y \to X \amalg Y$ be the coprojections. By Lemma 45.9.9 the map $(i^*, j^*) : H^*(X \amalg Y) \to H^*(X) \times H^*(Y)$ is an isomorphism. The statement of the lemma means that under the isomorphism $(i^*, j^*) : H^{2d}(X \amalg Y)(d) \to H^{2d}(X)(d) \oplus H^{2d}(Y)(d)$ the map $\int _ X + \int _ Y$ is tranformed into $\int _{X \amalg Y}$. This is true because

\[ \int _{X \amalg Y} a = \int _{X \amalg Y} i_*(i^*a) + j_*(j^*a) = \int _ X i^*a + \int _ Y j^*a \]

where the equality $a = i_*(i^*a) + j_*(j^*a)$ was shown in the proof of Lemma 45.9.9. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FHP. Beware of the difference between the letter 'O' and the digit '0'.