Lemma 45.12.3. Let $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Then
Proof. By the construction of $c^ A_ i$ we may assume $\mathcal{E}$ has constant rank $r$. Let $p : P \to X$ and $p' : P' \to X$ be the projective bundle associated to $\mathcal{E}$ and $\mathcal{E} \otimes \mathcal{L}$. Then there is an isomorphism $g : P \to P'$ such that $g^*\mathcal{O}_{P'}(1) = \mathcal{O}_ P(1) \otimes p^*\mathcal{L}$. See Constructions, Lemma 27.20.1. Thus
The desired equality follows formally from this and the definition of Chern classes using equation (45.12.1.1). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)