Lemma 20.31.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{K}^\bullet $ and $\mathcal{M}^\bullet $ be bounded below complexes of $\mathcal{O}_ X$-modules. Let $\mathcal{U} : X = \bigcup _{i \in I} U_ i$ be an open covering Then
\[ \xymatrix{ \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{K}^\bullet )) \otimes _ A^\mathbf {L} \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{M}^\bullet )) \ar[d] \ar[r] & R\Gamma (X, \mathcal{K}^\bullet ) \otimes _ A^\mathbf {L} R\Gamma (X, \mathcal{M}^\bullet ) \ar[d]^\mu \\ \text{Tot}( \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{K}^\bullet )) \otimes _ A \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{M}^\bullet ))) \ar[d]^{(07MB)} & R\Gamma (X, \mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{M}^\bullet ) \ar[d] \\ \text{Tot}( \check{\mathcal{C}}^\bullet ({\mathcal U}, \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) )) \ar[r] & R\Gamma (X, \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet )) } \]
where the horizontal arrows are the ones in Lemma 20.25.1 commutes in $D(A)$.
Proof.
Choose quasi-isomorphisms of complexes $a : \mathcal{K}^\bullet \to \mathcal{K}_1^\bullet $ and $b : \mathcal{M}^\bullet \to \mathcal{M}_1^\bullet $ as in Lemma 20.30.2. Since the maps $a$ and $b$ on stalks are homotopy equivalences we see that the induced map
\[ \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \to \text{Tot}(\mathcal{K}_1^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}_1^\bullet ) \]
is a homotopy equivalence on stalks too (More on Algebra, Lemma 15.58.2) and hence a quasi-isomorphism. Thus the targets
\[ R\Gamma (X, \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet )) = R\Gamma (X, \text{Tot}(\mathcal{K}_1^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}_1^\bullet )) \]
of the two diagrams are the same in $D(A)$. It follows that it suffices to prove the diagram commutes for $\mathcal{K}$ and $\mathcal{M}$ replaced by $\mathcal{K}_1$ and $\mathcal{M}_1$. This reduces us to the case discussed in the next paragraph.
Assume $\mathcal{K}^\bullet $ and $\mathcal{M}^\bullet $ are bounded below complexes of flasque $\mathcal{O}_ X$-modules and consider the diagram relating the cup product with the cup product (20.25.3.2) on Čech complexes. Then we can consider the commutative diagram
\[ \xymatrix{ \Gamma (X, \mathcal{K}^\bullet ) \otimes _ A^\mathbf {L} \Gamma (X, \mathcal{M}^\bullet ) \ar[d] \ar[r] & \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{K}^\bullet )) \otimes _ A^\mathbf {L} \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{M}^\bullet )) \ar[d] \\ \text{Tot}(\Gamma (X, \mathcal{K}^\bullet ) \otimes _ A \Gamma (X, \mathcal{M}^\bullet )) \ar[d] \ar[r] & \text{Tot}( \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{K}^\bullet )) \otimes _ A \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{M}^\bullet ))) \ar[d]^{(07MB)} \\ \Gamma (X, \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet )) \ar[r] & \text{Tot}( \check{\mathcal{C}}^\bullet ({\mathcal U}, \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) )) } \]
In this diagram the horizontal arrows are isomorphisms in $D(A)$ because for a bounded below complex of flasque modules such as $\mathcal{K}^\bullet $ we have
\[ \Gamma (X, \mathcal{K}^\bullet ) = \text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{K}^\bullet )) = R\Gamma (X, \mathcal{K}^\bullet ) \]
in $D(A)$. This follows from Lemma 20.12.3, Derived Categories, Lemma 13.16.7, and Lemma 20.25.2. Hence the commutativity of the diagram of the lemma involving (20.25.3.2) follows from the already proven commutativity of Lemma 20.31.3 where $f$ is the morphism to a point (see discussion following Lemma 20.31.3).
$\square$
Comments (0)
There are also: