Lemma 20.31.3. In the situation above the following diagram commutes

$\xymatrix{ f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet \ar[r] \ar[d] & Rf_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*\mathcal{M}^\bullet \ar[d]^{\text{Remark 0B68}} \\ \text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \ar[d]_{\text{naive cup product}} & Rf_*(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{M}^\bullet ) \ar[d] \\ f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \ar[r] & Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) }$

Proof. By the construction in Remark 20.28.7 we see that going around the diagram clockwise the map

$f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet \longrightarrow Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet )$

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & = Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \\ & \to Lf^*Rf_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lf^*Rf_*\mathcal{M}^\bullet \\ & \to \mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} \mathcal{M}^\bullet \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

By Lemma 20.28.6 this is also equal to

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & = Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \\ & \to f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f^*f_*\mathcal{M}^\bullet \\ & \to \mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} \mathcal{M}^\bullet \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

Going around anti-clockwise we obtain the map adjoint to the map

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & \to Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \\ & \to Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to Lf^*Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

By Lemma 20.28.6 this is also equal to

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & \to Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \\ & \to Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to f^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

Now the proof is finished by a contemplation of the diagram

$\xymatrix{ Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) \ar[d] \ar[rr] & & Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \ar[d] \\ Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \ar[d]_{naive} \ar[r] & f^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \ar[ldd]^{naive} \ar[dd] & f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} f^*f_*\mathcal{M}^\bullet \ar[dd] \ar[ldd] \\ Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \ar[d] \\ f^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \ar[rd] & \text{Tot}(f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} f^*f_*\mathcal{M}^\bullet ) \ar[d] & \mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{M}^\bullet \ar[ld] \\ & \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) }$

All of the polygons in this diagram commute. The top one commutes by Lemma 20.27.5. The square with the two naive cup products commutes because $Lf^* \to f^*$ is functorial in the complex of modules. Similarly with the square involving the two maps $\mathcal{A}^\bullet \otimes ^\mathbf {L} \mathcal{B}^\bullet \to \text{Tot}(\mathcal{A}^\bullet \otimes \mathcal{B}^\bullet )$. Finally, the commutativity of the remaining square is true on the level of complexes and may be viewed as the definition of the naive cup product (by the adjointness of $f^*$ and $f_*$). The proof is finished because going around the diagram on the outside are the two maps given above. $\square$

There are also:

• 4 comment(s) on Section 20.31: Cup product

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).