The Stacks project

Lemma 20.31.3. In the situation above the following diagram commutes

\[ \xymatrix{ f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet \ar[r] \ar[d] & Rf_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*\mathcal{M}^\bullet \ar[d]^{\text{Remark 0B68}} \\ \text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \ar[d]_{\text{naive cup product}} & Rf_*(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{M}^\bullet ) \ar[d] \\ f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \ar[r] & Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) } \]

Proof. By the construction in Remark 20.28.7 we see that going around the diagram clockwise the map

\[ f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet \longrightarrow Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \]

is adjoint to the map

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & = Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \\ & \to Lf^*Rf_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lf^*Rf_*\mathcal{M}^\bullet \\ & \to \mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} \mathcal{M}^\bullet \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

By Lemma 20.28.6 this is also equal to

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & = Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \\ & \to f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f^*f_*\mathcal{M}^\bullet \\ & \to \mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} \mathcal{M}^\bullet \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

Going around anti-clockwise we obtain the map adjoint to the map

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & \to Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \\ & \to Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to Lf^*Rf_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

By Lemma 20.28.6 this is also equal to

\begin{align*} Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) & \to Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \\ & \to Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to f^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \\ & \to \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \end{align*}

Now the proof is finished by a contemplation of the diagram

\[ \xymatrix{ Lf^*(f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} f_*\mathcal{M}^\bullet ) \ar[d] \ar[rr] & & Lf^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*f_*\mathcal{M}^\bullet \ar[d] \\ Lf^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \ar[d]_{naive} \ar[r] & f^*\text{Tot}( f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ Y} f_*\mathcal{M}^\bullet ) \ar[ldd]^{naive} \ar[dd] & f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} f^*f_*\mathcal{M}^\bullet \ar[dd] \ar[ldd] \\ Lf^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \ar[d] \\ f^*f_*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) \ar[rd] & \text{Tot}(f^*f_*\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} f^*f_*\mathcal{M}^\bullet ) \ar[d] & \mathcal{K}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{M}^\bullet \ar[ld] \\ & \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{M}^\bullet ) } \]

All of the polygons in this diagram commute. The top one commutes by Lemma 20.27.5. The square with the two naive cup products commutes because $Lf^* \to f^*$ is functorial in the complex of modules. Similarly with the square involving the two maps $\mathcal{A}^\bullet \otimes ^\mathbf {L} \mathcal{B}^\bullet \to \text{Tot}(\mathcal{A}^\bullet \otimes \mathcal{B}^\bullet )$. Finally, the commutativity of the remaining square is true on the level of complexes and may be viewed as the definiton of the naive cup product (by the adjointness of $f^*$ and $f_*$). The proof is finished because going around the diagram on the outside are the two maps given above. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 20.31: Cup product

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FP3. Beware of the difference between the letter 'O' and the digit '0'.