Lemma 21.37.6. Assume given a commutative diagram

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{(g', (g')^\sharp )} \ar[d]_{(f', (f')^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^{(f, f^\sharp )} \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^{(g, g^\sharp )} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]

of ringed topoi. Assume

$f$, $f'$, $g$, and $g'$ correspond to cocontinuous functors $u$, $u'$, $v$, and $v'$ as in Sites, Lemma 7.21.1,

$v \circ u' = u \circ v'$,

$v$ and $v'$ are continuous as well as cocontinuous,

for any object $V'$ of $\mathcal{D}'$ the functor ${}^{u'}_{V'}\mathcal{I} \to {}^{\ \ \ u}_{v(V')}\mathcal{I}$ given by $v$ is cofinal,

$g^{-1}\mathcal{O}_{\mathcal{D}} = \mathcal{O}_{\mathcal{D}'}$ and $(g')^{-1}\mathcal{O}_{\mathcal{C}} = \mathcal{O}_{\mathcal{C}'}$, and

$g'_! : \textit{Ab}(\mathcal{C}') \to \textit{Ab}(\mathcal{C})$ is exact^{1}.

Then we have $Rf'_* \circ (g')^* = g^* \circ Rf_*$ as functors $D(\mathcal{O}_\mathcal {C}) \to D(\mathcal{O}_{\mathcal{D}'})$.

**Proof.**
We have $g^* = Lg^* = g^{-1}$ and $(g')^* = L(g')^* = (g')^{-1}$ by condition (5). By Lemma 21.20.7 it suffices to prove the result on the derived category $D(\mathcal{C})$ of abelian sheaves. Choose an object $K \in D(\mathcal{C})$. Let $\mathcal{I}^\bullet $ be a K-injective complex of abelian sheaves on $\mathcal{C}$ representing $K$. By Derived Categories, Lemma 13.31.9 and assumption (6) we find that $(g')^{-1}\mathcal{I}^\bullet $ is a K-injective complex of abelian sheaves on $\mathcal{C}'$. By Modules on Sites, Lemma 18.41.3 we find that $f'_*(g')^{-1}\mathcal{I}^\bullet = g^{-1}f_*\mathcal{I}^\bullet $. Since $f_*\mathcal{I}^\bullet $ represents $Rf_*K$ and since $f'_*(g')^{-1}\mathcal{I}^\bullet $ represents $Rf'_*(g')^{-1}K$ we conclude.
$\square$

## Comments (0)

There are also: