Lemma 24.10.1. In the situation above we have
Proof. By the discussion in Modules on Sites, Section 18.19 the functors $j_!$ and $j^*$ on $\mathcal{O}$-modules are adjoint. Thus if we only look at the $\mathcal{O}$-module structures we know that
(Recall that $\text{Gr}^{gr}(\textit{Mod}(\mathcal{O}))$ denotes the graded category of graded $\mathcal{O}$-modules.) Then one has to check that these identifications map the $\mathcal{A}$-module maps on the left hand side to the $\mathcal{A}_ U$-module maps on the right hand side. To check this, given $\mathcal{O}_ U$-linear maps $f^ n : \mathcal{M}^ n \to j^*\mathcal{N}^{n + d}$ corresponding to $\mathcal{O}$-linear maps $g^ n : j_!\mathcal{M}^ n \to \mathcal{N}^{n + d}$ it suffices to show that
commutes if and only if
commutes. However, we know that
by the already used Modules on Sites, Lemma 18.27.9. We omit the verification that shows that the obstruction to the commutativity of the first diagram in the first group maps to the obstruction to the commutativity of the second diagram in the last group. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)