Loading web-font TeX/Math/Italic

The Stacks project

Lemma 24.24.2. The functors F, G of Lemma 24.24.1 have the following properties. Given a graded \mathcal{A}-module \mathcal{N} we have

  1. the counit \mathcal{N} \to F(G(\mathcal{N})) is injective,

  2. the map \overline{\text{d}} : \mathcal{N} \to \mathop{\mathrm{Coker}}(\mathcal{N} \to F(G(\mathcal{N})))[1] is an isomorphism, and

  3. G(\mathcal{N}) is an acyclic differential graded \mathcal{A}-module.

Proof. We observe that property (3) is a consequence of properties (1) and (2). Namely, if s is a nonzero local section of F(G(\mathcal{N})) with \text{d}(s) = 0, then s cannot be in the image of \mathcal{N} \to F(G(\mathcal{N})). Hence we can write the image \overline{s} of s in the cokernel as \overline{\text{d}}(s') for some local section s' of \mathcal{N}. Then we see that s = \text{d}(s') because the difference s - \text{d}(s') is still in the kernel of \text{d} and is contained in the image of the counit.

Let us write temporarily \mathcal{A}_{gr}, respectively \mathcal{A}_{dg} the sheaf \mathcal{A} viewed as a (right) graded module over itself, respectively as a (right) differential graded module over itself. The most important case of the lemma is to understand what is G(\mathcal{A}_{gr}). Of course G(\mathcal{A}_{gr}) is the object of \textit{Mod}(\mathcal{A}, \text{d}) representing the functor

\mathcal{M} \longmapsto \mathop{\mathrm{Hom}}\nolimits _{\textit{Mod}(\mathcal{A})}(\mathcal{A}_{gr}, F(\mathcal{M})) = \Gamma (\mathcal{C}, \mathcal{M})

By Remark 24.22.5 we see that this functor represented by C[-1] where C is the cone on the identity of \mathcal{A}_{dg}. We have a short exact sequence

0 \to \mathcal{A}_{dg}[-1] \to C[-1] \to \mathcal{A}_{dg} \to 0

in \textit{Mod}(\mathcal{A}, \text{d}) which is split by the counit \mathcal{A}_{gr} \to F(C[-1]) in \textit{Mod}(\mathcal{A}). Thus G(\mathcal{A}_{gr}) satisfies properties (1) and (2).

Let U be an object of \mathcal{C}. Denote j_ U : \mathcal{C}/U \to \mathcal{C} the localization morphism. Denote \mathcal{A}_ U the restriction of \mathcal{A} to U. We will use the notation \mathcal{A}_{U, gr} to denote \mathcal{A}_ U viewed as a graded \mathcal{A}_ U-module. Denote F_ U : \textit{Mod}(\mathcal{A}_ U, \text{d}) \to \textit{Mod}(\mathcal{A}_ U) the forgetful functor and denote G_ U its adjoint. Then we have the commutative diagrams

\vcenter { \xymatrix{ \textit{Mod}(\mathcal{A}, \text{d}) \ar[d]_{j_ U^*} \ar[r]_ F & \textit{Mod}(\mathcal{A}) \ar[d]^{j_ U^*} \\ \textit{Mod}(\mathcal{A}_ U, \text{d}) \ar[r]^{F_ U} & \textit{Mod}(\mathcal{A}_ U) } } \quad \text{and}\quad \vcenter { \xymatrix{ \textit{Mod}(\mathcal{A}_ U, \text{d}) \ar[r]_{F_ U} \ar[d]_{j_{U!}} & \textit{Mod}(\mathcal{A}_ U) \ar[d]^{j_{U!}} \\ \textit{Mod}(\mathcal{A}, \text{d}) \ar[r]^ F & \textit{Mod}(\mathcal{A}) } }

by the construction of j^*_ U and j_{U!} in Sections 24.9, 24.18, 24.10, and 24.19. By uniqueness of adjoints we obtain j_{U!} \circ G_ U = G \circ j_{U!}. Since j_{U!} is an exact functor, we see that the properties (1) and (2) for the counit \mathcal{A}_{U, gr} \to F_ U(G_ U(\mathcal{A}_{U, gr})) which we've seen in the previous part of the proof imply properties (1) and (2) for the counit j_{U!}\mathcal{A}_{U, gr} \to F(G(j_{U!}\mathcal{A}_{U, gr})) = j_{U!}F_ U(G_ U(\mathcal{A}_{U, gr})).

In the proof of Lemma 24.11.1 we have seen that any object of \textit{Mod}(\mathcal{A}) is a quotient of a direct sum of copies of j_{U!}\mathcal{A}_{U, gr}. Since G is a left adjoint, we see that G commutes with direct sums. Thus properties (1) and (2) hold for direct sums of objects for which they hold. Thus we see that every object \mathcal{N} of \textit{Mod}(\mathcal{A}) fits into an exact sequence

\mathcal{N}_1 \to \mathcal{N}_0 \to \mathcal{N} \to 0

such that (1) and (2) hold for \mathcal{N}_1 and \mathcal{N}_0. We leave it to the reader to deduce (1) and (2) for \mathcal{N} using that G is right exact. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.