The Stacks project

Remark 50.14.2. In the situation of Proposition 50.14.1 we get moreover that the map

\[ \tilde\xi : \bigoplus \nolimits _{t = 0, \ldots , r - 1} \Omega ^\bullet _{X/S}[-2t] \longrightarrow Rp_*\Omega ^\bullet _{P/S} \]

is an isomorphism in $D(X, (X \to S)^{-1}\mathcal{O}_ X)$ as follows immediately from the application of Proposition 50.13.3. Note that the arrow for $t = 0$ is simply the canonical map $c_{P/X} : \Omega ^\bullet _{X/S} \to Rp_*\Omega ^\bullet _{P/S}$ of Section 50.2. In fact, we can pin down this map further in this particular case. Namely, consider the canonical map

\[ \xi ' : \Omega ^\bullet _{P/S} \to \Omega ^\bullet _{P/S}[2] \]

of Remark 50.4.3 corresponding to $c_1^{dR}(\mathcal{O}_ P(1))$. Then

\[ \xi '[2(t - 1)] \circ \ldots \circ \xi '[2] \circ \xi ' : \Omega ^\bullet _{P/S} \to \Omega ^\bullet _{P/S}[2t] \]

is the map of Remark 50.4.3 corresponding to $c_1^{dR}(\mathcal{O}_ P(1))^ t$. Tracing through the choices made in the proof of Proposition 50.13.3 we find the value

\[ \tilde\xi |_{\Omega ^\bullet _{X/S}[-2t]} = Rp_*\xi '[-2] \circ \ldots \circ Rp_*\xi '[-2(t - 1)] \circ Rp_*\xi '[-2t] \circ c_{P/X}[-2t] \]

for the restriction of our isomorphism to the summand $\Omega ^\bullet _{X/S}[-2t]$. This has the following simple consequence we will use below: let

\[ M = \bigoplus \nolimits _{t = 1, \ldots , r - 1} \Omega ^\bullet _{X/S}[-2t] \quad \text{and}\quad K = \bigoplus \nolimits _{t = 0, \ldots , r - 2} \Omega ^\bullet _{X/S}[-2t] \]

viewed as subcomplexes of the source of the arrow $\tilde\xi $. It follows formally from the discussion above that

\[ c_{P/X} \oplus \tilde\xi |_ M : \Omega ^\bullet _{X/S} \oplus M \longrightarrow Rp_*\Omega ^\bullet _{P/S} \]

is an isomorphism and that the diagram

\[ \xymatrix{ K \ar[d]_{\tilde\xi |_ K} \ar[r]_{\text{id}} & M[2] \ar[d]^{(\tilde\xi |_ M)[2]} \\ Rp_*\Omega ^\bullet _{P/S} \ar[r]^{Rp_*\xi '} & Rp_*\Omega ^\bullet _{P/S}[2] } \]

commutes where $\text{id} : K \to M[2]$ identifies the summand corresponding to $t$ in the deomposition of $K$ to the summand corresponding to $t + 1$ in the decomposition of $M$.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FUN. Beware of the difference between the letter 'O' and the digit '0'.