Loading [MathJax]/extensions/tex2jax.js

The Stacks project

50.14 Projective space bundle formula

The title says it all.

Proposition 50.14.1. Let $X \to S$ be a morphism of schemes. Let $\mathcal{E}$ be a locally free $\mathcal{O}_ X$-module of constant rank $r$. Consider the morphism $p : P = \mathbf{P}(\mathcal{E}) \to X$. Then the map

\[ \bigoplus \nolimits _{i = 0, \ldots , r - 1} H^*_{dR}(X/S) \longrightarrow H^*_{dR}(P/S) \]

given by the rule

\[ (a_0, \ldots , a_{r - 1}) \longmapsto \sum \nolimits _{i = 0, \ldots , r - 1} c_1^{dR}(\mathcal{O}_ P(1))^ i \cup p^*(a_ i) \]

is an isomorphism.

Proof. Choose an affine open $\mathop{\mathrm{Spec}}(A) \subset X$ such that $\mathcal{E}$ restricts to the trivial locally free module $\mathcal{O}_{\mathop{\mathrm{Spec}}(A)}^{\oplus r}$. Then $P \times _ X \mathop{\mathrm{Spec}}(A) = \mathbf{P}^{r - 1}_ A$. Thus we see that $p$ is proper and smooth, see Section 50.11. Moreover, the classes $c_1^{dR}(\mathcal{O}_ P(1))^ i$, $i = 0, 1, \ldots , r - 1$ restricted to a fibre $X_ y = \mathbf{P}^{r - 1}_ y$ freely generate the de Rham cohomology $H^*_{dR}(X_ y/y)$ over $\kappa (y)$, see Lemma 50.11.4. Thus we've verified the conditions of Proposition 50.13.3 and we win. $\square$

Remark 50.14.2. In the situation of Proposition 50.14.1 we get moreover that the map

\[ \tilde\xi : \bigoplus \nolimits _{t = 0, \ldots , r - 1} \Omega ^\bullet _{X/S}[-2t] \longrightarrow Rp_*\Omega ^\bullet _{P/S} \]

is an isomorphism in $D(X, (X \to S)^{-1}\mathcal{O}_ X)$ as follows immediately from the application of Proposition 50.13.3. Note that the arrow for $t = 0$ is simply the canonical map $c_{P/X} : \Omega ^\bullet _{X/S} \to Rp_*\Omega ^\bullet _{P/S}$ of Section 50.2. In fact, we can pin down this map further in this particular case. Namely, consider the canonical map

\[ \xi ' : \Omega ^\bullet _{P/S} \to \Omega ^\bullet _{P/S}[2] \]

of Remark 50.4.3 corresponding to $c_1^{dR}(\mathcal{O}_ P(1))$. Then

\[ \xi '[2(t - 1)] \circ \ldots \circ \xi '[2] \circ \xi ' : \Omega ^\bullet _{P/S} \to \Omega ^\bullet _{P/S}[2t] \]

is the map of Remark 50.4.3 corresponding to $c_1^{dR}(\mathcal{O}_ P(1))^ t$. Tracing through the choices made in the proof of Proposition 50.13.3 we find the value

\[ \tilde\xi |_{\Omega ^\bullet _{X/S}[-2t]} = Rp_*\xi '[-2] \circ \ldots \circ Rp_*\xi '[-2(t - 1)] \circ Rp_*\xi '[-2t] \circ c_{P/X}[-2t] \]

for the restriction of our isomorphism to the summand $\Omega ^\bullet _{X/S}[-2t]$. This has the following simple consequence we will use below: let

\[ M = \bigoplus \nolimits _{t = 1, \ldots , r - 1} \Omega ^\bullet _{X/S}[-2t] \quad \text{and}\quad K = \bigoplus \nolimits _{t = 0, \ldots , r - 2} \Omega ^\bullet _{X/S}[-2t] \]

viewed as subcomplexes of the source of the arrow $\tilde\xi $. It follows formally from the discussion above that

\[ c_{P/X} \oplus \tilde\xi |_ M : \Omega ^\bullet _{X/S} \oplus M \longrightarrow Rp_*\Omega ^\bullet _{P/S} \]

is an isomorphism and that the diagram

\[ \xymatrix{ K \ar[d]_{\tilde\xi |_ K} \ar[r]_{\text{id}} & M[2] \ar[d]^{(\tilde\xi |_ M)[2]} \\ Rp_*\Omega ^\bullet _{P/S} \ar[r]^{Rp_*\xi '} & Rp_*\Omega ^\bullet _{P/S}[2] } \]

commutes where $\text{id} : K \to M[2]$ identifies the summand corresponding to $t$ in the deomposition of $K$ to the summand corresponding to $t + 1$ in the decomposition of $M$.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.