The Stacks project

50.15 Log poles along a divisor

Let $X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. If $X$ étale locally along $Y$ looks like $Y \times \mathbf{A}^1$, then there is a canonical short exact sequence of complexes

\[ 0 \to \Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}(\log Y) \to \Omega ^\bullet _{Y/S}[-1] \to 0 \]

having many good properties we will discuss in this section. There is a variant of this construction where one starts with a normal crossings divisor (Étale Morphisms, Definition 41.21.1) which we will discuss elsewhere (insert future reference here).

Definition 50.15.1. Let $X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. We say the de Rham complex of log poles is defined for $Y \subset X$ over $S$ if for all $y \in Y$ and local equation $f \in \mathcal{O}_{X, y}$ of $Y$ we have

  1. $\mathcal{O}_{X, y} \to \Omega _{X/S, y}$, $g \mapsto g \text{d}f$ is a split injection, and

  2. $\Omega ^ p_{X/S, y}$ is $f$-torsion free for all $p$.

An easy local calculation shows that it suffices for every $y \in Y$ to find one local equation $f$ for which conditions (1) and (2) hold.

Lemma 50.15.2. Let $X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. Assume the de Rham complex of log poles is defined for $Y \subset X$ over $S$. There is a canonical short exact sequence of complexes

\[ 0 \to \Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}(\log Y) \to \Omega ^\bullet _{Y/S}[-1] \to 0 \]

Proof. Our assumption is that for every $y \in Y$ and local equation $f \in \mathcal{O}_{X, y}$ of $Y$ we have

\[ \Omega _{X/S, y} = \mathcal{O}_{X, y}\text{d}f \oplus M \quad \text{and}\quad \Omega ^ p_{X/S, y} = \wedge ^{p - 1}(M)\text{d}f \oplus \wedge ^ p(M) \]

for some module $M$ with $f$-torsion free exterior powers $\wedge ^ p(M)$. It follows that

\[ \Omega ^ p_{Y/S, y} = \wedge ^ p(M/fM) = \wedge ^ p(M)/f\wedge ^ p(M) \]

Below we will tacitly use these facts. In particular the sheaves $\Omega ^ p_{X/S}$ have no nonzero local sections supported on $Y$ and we have a canonical inclusion

\[ \Omega ^ p_{X/S} \subset \Omega ^ p_{X/S}(Y) \]

see More on Flatness, Section 38.42. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine open subscheme such that $Y \cap U = V(f)$ for some nonzerodivisor $f \in A$. Let us consider the $\mathcal{O}_ U$-submodule of $\Omega ^ p_{X/S}(Y)|_ U$ generated by $\Omega ^ p_{X/S}|_ U$ and $\text{d}\log (f) \wedge \Omega ^{p - 1}_{X/S}$ where $\text{d}\log (f) = f^{-1}\text{d}(f)$. This is independent of the choice of $f$ as another generator of the ideal of $Y$ on $U$ is equal to $uf$ for a unit $u \in A$ and we get

\[ \text{d}\log (uf) - \text{d}\log (f) = \text{d}\log (u) = u^{-1}\text{d}u \]

which is a section of $\Omega _{X/S}$ over $U$. These local sheaves glue to give a quasi-coherent submodule

\[ \Omega ^ p_{X/S} \subset \Omega ^ p_{X/S}(\log Y) \subset \Omega ^ p_{X/S}(Y) \]

Let us agree to think of $\Omega ^ p_{Y/S}$ as a quasi-coherent $\mathcal{O}_ X$-module. There is a unique surjective $\mathcal{O}_ X$-linear map

\[ \text{Res} : \Omega ^ p_{X/S}(\log Y) \to \Omega ^{p - 1}_{Y/S} \]

defined by the rule

\[ \text{Res}(\eta ' + \text{d}\log (f) \wedge \eta ) = \eta |_{Y \cap U} \]

for all opens $U$ as above and all $\eta ' \in \Omega ^ p_{X/S}(U)$ and $\eta \in \Omega ^{p - 1}_{X/S}(U)$. If a form $\eta $ over $U$ restricts to zero on $Y \cap U$, then $\eta = \text{d}f \wedge \eta ' + f\eta ''$ for some forms $\eta '$ and $\eta ''$ over $U$. We conclude that we have a short exact sequence

\[ 0 \to \Omega ^ p_{X/S} \to \Omega ^ p_{X/S}(\log Y) \to \Omega ^{p - 1}_{Y/S} \to 0 \]

for all $p$. We still have to define the differentials $\Omega ^ p_{X/S}(\log Y) \to \Omega ^{p + 1}_{X/S}(\log Y)$. On the subsheaf $\Omega ^ p_{X/S}$ we use the differential of the de Rham complex of $X$ over $S$. Finally, we define $\text{d}(\text{d}\log (f) \wedge \eta ) = -\text{d}\log (f) \wedge \text{d}\eta $. The sign is forced on us by the Leibniz rule (on $\Omega ^\bullet _{X/S}$) and it is compatible with the differential on $\Omega ^\bullet _{Y/S}[-1]$ which is after all $-\text{d}_{Y/S}$ by our sign convention in Homology, Definition 12.14.7. In this way we obtain a short exact sequence of complexes as stated in the lemma. $\square$

Definition 50.15.3. Let $X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. Assume the de Rham complex of log poles is defined for $Y \subset X$ over $S$. Then the complex

\[ \Omega ^\bullet _{X/S}(\log Y) \]

constructed in Lemma 50.15.2 is the de Rham complex of log poles for $Y \subset X$ over $S$.

This complex has many good properties.

Lemma 50.15.4. Let $p : X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. Assume the de Rham complex of log poles is defined for $Y \subset X$ over $S$.

  1. The maps $\wedge : \Omega ^ p_{X/S} \times \Omega ^ q_{X/S} \to \Omega ^{p + q}_{X/S}$ extend uniquely to $\mathcal{O}_ X$-bilinear maps

    \[ \wedge : \Omega ^ p_{X/S}(\log Y) \times \Omega ^ q_{X/S}(\log Y) \to \Omega ^{p + q}_{X/S}(\log Y) \]

    satisfying the Leibniz rule $ \text{d}(\omega \wedge \eta ) = \text{d}(\omega ) \wedge \eta + (-1)^{\deg (\omega )} \omega \wedge \text{d}(\eta )$,

  2. with multiplication as in (1) the map $\Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}(\log (Y)$ is a homomorphism of differential graded $\mathcal{O}_ S$-algebras,

  3. via the maps in (1) we have $\Omega ^ p_{X/S}(\log Y) = \wedge ^ p(\Omega ^1_{X/S}(\log Y))$, and

  4. the map $\text{Res} : \Omega ^\bullet _{X/S}(\log Y) \to \Omega ^\bullet _{Y/S}[-1]$ satisfies

    \[ \text{Res}(\omega \wedge \eta ) = \text{Res}(\omega ) \wedge \eta |_ Y \]

    for $\omega $ a local section of $\Omega ^ p_{X/S}(\log Y)$ and $\eta $ a local section of $\Omega ^ q_{X/S}$.

Proof. This follows by direct calcuation from the local construction of the complex in the proof of Lemma 50.15.2. Details omitted. $\square$

Consider a commutative diagram

\[ \xymatrix{ X' \ar[r]_ f \ar[d] & X \ar[d] \\ S' \ar[r] & S } \]

of schemes. Let $Y \subset X$ be an effective Cartier divisor whose pullback $Y' = f^*Y$ is defined (Divisors, Definition 31.13.12). Assume the de Rham complex of log poles is defined for $Y \subset X$ over $S$ and the de Rham complex of log poles is defined for $Y' \subset X'$ over $S'$. In this case we obtain a map of short exact sequences of complexes

\[ \xymatrix{ 0 \ar[r] & f^{-1}\Omega ^\bullet _{X/S} \ar[r] \ar[d] & f^{-1}\Omega ^\bullet _{X/S}(\log Y) \ar[r] \ar[d] & f^{-1}\Omega ^\bullet _{Y/S}[-1] \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \Omega ^\bullet _{X'/S'} \ar[r] & \Omega ^\bullet _{X'/S'}(\log Y') \ar[r] & \Omega ^\bullet _{Y'/S'}[-1] \ar[r] & 0 } \]

Linearizing, for every $p$ we obtain a linear map $f^*\Omega ^ p_{X/S}(\log Y) \to \Omega ^ p_{X'/S'}(\log Y')$.

Lemma 50.15.5. Let $f : X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. Assume the de Rham complex of log poles is defined for $Y \subset X$ over $S$. Denote

\[ \delta : \Omega ^\bullet _{Y/S} \to \Omega ^\bullet _{X/S}[2] \]

in $D(X, f^{-1}\mathcal{O}_ S)$ the “boundary” map coming from the short exact sequence in Lemma 50.15.2. Denote

\[ \xi ' : \Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}[2] \]

in $D(X, f^{-1}\mathcal{O}_ S)$ the map of Remark 50.4.3 corresponding to $\xi = c_1^{dR}(\mathcal{O}_ X(-Y))$. Denote

\[ \zeta ' : \Omega ^\bullet _{Y/S} \to \Omega ^\bullet _{Y/S}[2] \]

in $D(Y, f|_ Y^{-1}\mathcal{O}_ S)$ the map of Remark 50.4.3 corresponding to $\zeta = c_1^{dR}(\mathcal{O}_ X(-Y)|_ Y)$. Then the diagram

\[ \xymatrix{ \Omega ^\bullet _{X/S} \ar[d]_{\xi '} \ar[r] & \Omega ^\bullet _{Y/S} \ar[d]^{\zeta '} \ar[ld]_\delta \\ \Omega ^\bullet _{X/S}[2] \ar[r] & \Omega ^\bullet _{Y/S}[2] } \]

is commutative in $D(X, f^{-1}\mathcal{O}_ S)$.

Proof. More precisely, we define $\delta $ as the boundary map corresponding to the shifted short exact sequence

\[ 0 \to \Omega ^\bullet _{X/S}[1] \to \Omega ^\bullet _{X/S}(\log Y)[1] \to \Omega ^\bullet _{Y/S} \to 0 \]

It suffices to prove each triangle commutes. Set $\mathcal{L} = \mathcal{O}_ X(-Y)$. Denote $\pi : L \to X$ the line bundle with $\pi _*\mathcal{O}_ L = \bigoplus _{n \geq 0} \mathcal{L}^{\otimes n}$.

Commutativity of the upper left triangle. By Lemma 50.10.3 the map $\xi '$ is the boundary map of the triangle given in Lemma 50.10.2. By functoriality it suffices to prove there exists a morphism of short exact sequences

\[ \xymatrix{ 0 \ar[r] & \Omega ^\bullet _{X/S}[1] \ar[r] \ar[d] & \Omega ^\bullet _{L^\star /S, 0}[1] \ar[r] \ar[d] & \Omega ^\bullet _{X/S} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \Omega ^\bullet _{X/S}[1] \ar[r] & \Omega ^\bullet _{X/S}(\log Y)[1] \ar[r] & \Omega ^\bullet _{Y/S} \ar[r] & 0 } \]

where the left and right vertical arrows are the obvious ones. We can define the middle vertical arrow by the rule

\[ \omega ' + \text{d}\log (s) \wedge \omega \longmapsto \omega ' + \text{d}\log (f) \wedge \omega \]

where $\omega ', \omega $ are local sections of $\Omega ^\bullet _{X/S}$ and where $s$ is a local generator of $\mathcal{L}$ and $f \in \mathcal{O}_ X(-Y)$ is the corresponding section of the ideal sheaf of $Y$ in $X$. Since the constructions of the maps in Lemmas 50.10.2 and 50.15.2 match exactly, this works.

Commutativity of the lower right triangle. Denote $\overline{L}$ the restriction of $L$ to $Y$. By Lemma 50.10.3 the map $\zeta '$ is the boundary map of the triangle given in Lemma 50.10.2 using the line bundle $\overline{L}$ on $Y$. By functoriality it suffices to prove there exists a morphism of short exact sequences

\[ \xymatrix{ 0 \ar[r] & \Omega ^\bullet _{X/S}[1] \ar[r] \ar[d] & \Omega ^\bullet _{X/S}(\log Y)[1] \ar[r] \ar[d] & \Omega ^\bullet _{Y/S} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \Omega ^\bullet _{Y/S}[1] \ar[r] & \Omega ^\bullet _{\overline{L}^\star /S, 0}[1] \ar[r] & \Omega ^\bullet _{Y/S} \ar[r] & 0 \\ } \]

where the left and right vertical arrows are the obvious ones. We can define the middle vertical arrow by the rule

\[ \omega ' + \text{d}\log (f) \wedge \omega \longmapsto \omega '|_ Y + \text{d}\log (\overline{s}) \wedge \omega |_ Y \]

where $\omega ', \omega $ are local sections of $\Omega ^\bullet _{X/S}$ and where $f$ is a local generator of $\mathcal{O}_ X(-Y)$ viewed as a function on $X$ and where $\overline{s}$ is $f|_ Y$ viewed as a section of $\mathcal{L}|_ Y = \mathcal{O}_ X(-Y)|_ Y$. Since the constructions of the maps in Lemmas 50.10.2 and 50.15.2 match exactly, this works. $\square$

Lemma 50.15.6. Let $X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. Assume the de Rham complex of log poles is defined for $Y \subset X$ over $S$. Let $b \in H^ m_{dR}(X/S)$ be a de Rham cohomology class whose restriction to $Y$ is zero. Then $c_1^{dR}(\mathcal{O}_ X(Y)) \cup b = 0$ in $H^{m + 2}_{dR}(X/S)$.

Proof. This follows immediately from Lemma 50.15.5. Namely, we have

\[ c_1^{dR}(\mathcal{O}_ X(Y)) \cup b = -c_1^{dR}(\mathcal{O}_ X(-Y)) \cup b = -\xi '(b) = -\delta (b|_ Y) = 0 \]

as desired. For the second equality, see Remark 50.4.3. $\square$

Lemma 50.15.7. Let $X \to T \to S$ be morphisms of schemes. Let $Y \subset X$ be an effective Cartier divisor. If both $X \to T$ and $Y \to T$ are smooth, then the de Rham complex of log poles is defined for $Y \subset X$ over $S$.

Proof. Let $y \in Y$ be a point. By More on Morphisms, Lemma 37.37.9 there exists an integer $0 \geq m$ and a commutative diagram

\[ \xymatrix{ Y \ar[d] & V \ar[l] \ar[d] \ar[r] & \mathbf{A}^ m_ T \ar[d]^{(a_1, \ldots , a_ m) \mapsto (a_1, \ldots , a_ m, 0)} \\ X & U \ar[l] \ar[r]^-\pi & \mathbf{A}^{m + 1}_ T } \]

where $U \subset X$ is open, $V = Y \cap U$, $\pi $ is étale, $V = \pi ^{-1}(\mathbf{A}^ m_ T)$, and $y \in V$. Denote $z \in \mathbf{A}^ m_ T$ the image of $y$. Then we have

\[ \Omega ^ p_{X/S, y} = \Omega ^ p_{\mathbf{A}^{m + 1}_ T/S, z} \otimes _{\mathcal{O}_{\mathbf{A}^{m + 1}_ T, z}} \mathcal{O}_{X, x} \]

by Lemma 50.2.2. Denote $x_1, \ldots , x_{m + 1}$ the coordinate functions on $\mathbf{A}^{m + 1}_ T$. Since the conditions (1) and (2) in Definition 50.15.1 do not depend on the choice of the local coordinate, it suffices to check the conditions (1) and (2) when $f$ is the image of $x_{m + 1}$ by the flat local ring homomorphism $\mathcal{O}_{\mathbf{A}^{m + 1}_ T, z} \to \mathcal{O}_{X, x}$. In this way we see that it suffices to check conditions (1) and (2) for $\mathbf{A}^ m_ T \subset \mathbf{A}^{m + 1}_ T$ and the point $z$. To prove this case we may assume $S = \mathop{\mathrm{Spec}}(A)$ and $T = \mathop{\mathrm{Spec}}(B)$ are affine. Let $A \to B$ be the ring map corresponding to the morphism $T \to S$ and set $P = B[x_1, \ldots , x_{m + 1}]$ so that $\mathbf{A}^{m + 1}_ T = \mathop{\mathrm{Spec}}(B)$. We have

\[ \Omega _{P/A} = \Omega _{B/A} \otimes _ B P \oplus \bigoplus \nolimits _{j = 1, \ldots , m} P \text{d}x_ j \oplus P \text{d}x_{m + 1} \]

Hence the map $P \to \Omega _{P/A}$, $g \mapsto g \text{d}x_{m + 1}$ is a split injection and $x_{m + 1}$ is a nonzerodivisor on $\Omega ^ p_{P/A}$ for all $p \geq 0$. Localizing at the prime ideal corresponding to $z$ finishes the proof. $\square$

Remark 50.15.8. Let $S$ be a locally Noetherian scheme. Let $X$ be locally of finite type over $S$. Let $Y \subset X$ be an effective Cartier divisor. If the map

\[ \mathcal{O}_{X, y}^\wedge \longrightarrow \mathcal{O}_{Y, y}^\wedge \]

has a section for all $y \in Y$, then the de Rham complex of log poles is defined for $Y \subset X$ over $S$. If we ever need this result we will formulate a precise statement and add a proof here.

Remark 50.15.9. Let $S$ be a locally Noetherian scheme. Let $X$ be locally of finite type over $S$. Let $Y \subset X$ be an effective Cartier divisor. If for every $y \in Y$ we can find a diagram of schemes over $S$

\[ X \xleftarrow {\varphi } U \xrightarrow {\psi } V \]

with $\varphi $ étale and $\psi |_{\varphi ^{-1}(Y)} : \varphi ^{-1}(Y) \to V$ étale, then the de Rham complex of log poles is defined for $Y \subset X$ over $S$. A special case is when the pair $(X, Y)$ étale locally looks like $(V \times \mathbf{A}^1, V \times \{ 0\} )$. If we ever need this result we will formulate a precise statement and add a proof here.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FMU. Beware of the difference between the letter 'O' and the digit '0'.