Lemma 50.15.4. Let $p : X \to S$ be a morphism of schemes. Let $Y \subset X$ be an effective Cartier divisor. Assume the de Rham complex of log poles is defined for $Y \subset X$ over $S$.
The maps $\wedge : \Omega ^ p_{X/S} \times \Omega ^ q_{X/S} \to \Omega ^{p + q}_{X/S}$ extend uniquely to $\mathcal{O}_ X$-bilinear maps
\[ \wedge : \Omega ^ p_{X/S}(\log Y) \times \Omega ^ q_{X/S}(\log Y) \to \Omega ^{p + q}_{X/S}(\log Y) \]satisfying the Leibniz rule $ \text{d}(\omega \wedge \eta ) = \text{d}(\omega ) \wedge \eta + (-1)^{\deg (\omega )} \omega \wedge \text{d}(\eta )$,
with multiplication as in (1) the map $\Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}(\log (Y)$ is a homomorphism of differential graded $\mathcal{O}_ S$-algebras,
via the maps in (1) we have $\Omega ^ p_{X/S}(\log Y) = \wedge ^ p(\Omega ^1_{X/S}(\log Y))$, and
the map $\text{Res} : \Omega ^\bullet _{X/S}(\log Y) \to \Omega ^\bullet _{Y/S}[-1]$ satisfies
\[ \text{Res}(\omega \wedge \eta ) = \text{Res}(\omega ) \wedge \eta |_ Y \]for $\omega $ a local section of $\Omega ^ p_{X/S}(\log Y)$ and $\eta $ a local section of $\Omega ^ q_{X/S}$.
Comments (3)
Comment #6218 by Martin Bright on
Comment #6220 by Johan on
Comment #6355 by Johan on
There are also: