Lemma 37.13.10. Let $f : X \to Y$ and $Y \to Z$ be morphisms of schemes. Assume $X \to Y$ is a complete intersection morphism. Then there is a canonical distinguished triangle

\[ f^*\mathop{N\! L}\nolimits _{Y/Z} \to \mathop{N\! L}\nolimits _{X/Z} \to \mathop{N\! L}\nolimits _{X/Y} \to f^*\mathop{N\! L}\nolimits _{Y/Z}[1] \]

in $D(\mathcal{O}_ X)$ which recovers the $6$-term exact sequence of Lemma 37.13.9.

**Proof.**
It suffices to show the canonical map

\[ f^*\mathop{N\! L}\nolimits _{Y/Z} \to \text{Cone}(\mathop{N\! L}\nolimits _{X/Y} \to \mathop{N\! L}\nolimits _{X/Z})[-1] \]

of Modules, Lemma 17.28.7 is an isomorphism in $D(\mathcal{O}_ X)$. In order to show this, it suffices to show that the $6$-term sequence has a zero on the left, i.e., that $H^{-1}(f^*\mathop{N\! L}\nolimits _{Y/Z}) \to H^{-1}(\mathop{N\! L}\nolimits _{X/Z})$ is injective. Affine locally this follows from the corresponding algebra result in More on Algebra, Lemma 15.32.6. To translate into algebra use Lemma 37.13.2.
$\square$

## Comments (0)