The Stacks project

Proposition 50.20.4. Let $k$ be a field. Let $X$ be a nonempty smooth proper scheme over $k$ equidimensional of dimension $d$. There exists a $k$-linear map

\[ t : H^{2d}_{dR}(X/k) \longrightarrow k \]

unique up to precomposing by multiplication by a unit of $H^0(X, \mathcal{O}_ X)$ with the following property: for all $i$ the pairing

\[ H^ i_{dR}(X/k) \times H_{dR}^{2d - i}(X/k) \longrightarrow k, \quad (\xi , \xi ') \longmapsto t(\xi \cup \xi ') \]

is perfect.

Proof. By the Hodge-to-de Rham spectral sequence (Section 50.6), the vanishing of $\Omega ^ i_{X/k}$ for $i > d$, the vanishing in Cohomology, Proposition 20.20.7 and the results of Lemmas 50.20.2 and 50.20.3 we see that $H^0_{dR}(X/k) = H^0(X, \mathcal{O}_ X)$ and $H^ d(X, \Omega ^ d_{X/k}) = H_{dR}^{2d}(X/k)$. More precisesly, these identifications come from the maps of complexes

\[ \Omega ^\bullet _{X/k} \to \mathcal{O}_ X[0] \quad \text{and}\quad \Omega ^ d_{X/k}[-d] \to \Omega ^\bullet _{X/k} \]

Let us choose $t : H_{dR}^{2d}(X/k) \to k$ which via this identification corresponds to a $t$ as in Lemma 50.20.1. Then in any case we see that the pairing displayed in the lemma is perfect for $i = 0$.

Denote $\underline{k}$ the constant sheaf with value $k$ on $X$. Let us abbreviate $\Omega ^\bullet = \Omega ^\bullet _{X/k}$. Consider the map (50.4.0.1) which in our situation reads

\[ \wedge : \text{Tot}(\Omega ^\bullet \otimes _{\underline{k}} \Omega ^\bullet ) \longrightarrow \Omega ^\bullet \]

For every integer $p = 0, 1, \ldots , d$ this map annihilates the subcomplex $\text{Tot}(\sigma _{> p} \Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p} \Omega ^\bullet )$ for degree reasons. Hence we find that the restriction of $\wedge $ to the subcomplex $\text{Tot}(\Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p}\Omega ^\bullet )$ factors through a map of complexes

\[ \gamma _ p : \text{Tot}(\sigma _{\leq p} \Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p} \Omega ^\bullet ) \longrightarrow \Omega ^\bullet \]

Using the same procedure as in Section 50.4 we obtain cup products

\[ H^ i(X, \sigma _{\leq p} \Omega ^\bullet ) \times H^{2d - i}(X, \sigma _{\geq d - p}\Omega ^\bullet ) \longrightarrow H_{dR}^{2d}(X, \Omega ^\bullet ) \]

We will prove by induction on $p$ that these cup products via $t$ induce perfect pairings between $H^ i(X, \sigma _{\leq p} \Omega ^\bullet )$ and $H^{2d - i}(X, \sigma _{\geq d - p}\Omega ^\bullet )$. For $p = d$ this is the assertion of the proposition.

The base case is $p = 0$. In this case we simply obtain the pairing between $H^ i(X, \mathcal{O}_ X)$ and $H^{d - i}(X, \Omega ^ d)$ of Lemma 50.20.1 and the result is true.

Induction step. Say we know the result is true for $p$. Then we consider the distinguished triangle

\[ \Omega ^{p + 1}[-p - 1] \to \sigma _{\leq p + 1}\Omega ^\bullet \to \sigma _{\leq p}\Omega ^\bullet \to \Omega ^{p + 1}[-p] \]

and the distinguished triangle

\[ \sigma _{\geq d - p}\Omega ^\bullet \to \sigma _{\geq d - p - 1}\Omega ^\bullet \to \Omega ^{d - p - 1}[-d + p + 1] \to (\sigma _{\geq d - p}\Omega ^\bullet )[1] \]

Observe that both are distinguished triangles in the homotopy category of complexes of sheaves of $\underline{k}$-modules; in particular the maps $\sigma _{\leq p}\Omega ^\bullet \to \Omega ^{p + 1}[-p]$ and $\Omega ^{d - p - 1}[-d + p + 1] \to (\sigma _{\geq d - p}\Omega ^\bullet )[1]$ are given by actual maps of complexes, namely using the differential $\Omega ^ p \to \Omega ^{p + 1}$ and the differential $\Omega ^{d - p - 1} \to \Omega ^{d - p}$. Consider the long exact cohomology sequences associated to these distinguished triangles

\[ \xymatrix{ H^{i - 1}(X, \sigma _{\leq p}\Omega ^\bullet ) \ar[d]_ a \\ H^ i(X, \Omega ^{p + 1}[-p - 1]) \ar[d]_ b \\ H^ i(X, \sigma _{\leq p + 1}\Omega ^\bullet ) \ar[d]_ c \\ H^ i(X, \sigma _{\leq p}\Omega ^\bullet ) \ar[d]_ d \\ H^{i + 1}(X, \Omega ^{p + 1}[-p - 1]) } \quad \quad \xymatrix{ H^{2d - i + 1}(X, \sigma _{\geq d - p}\Omega ^\bullet ) \\ H^{2d - i}(X, \Omega ^{d - p - 1}[-d + p + 1]) \ar[u]_{a'} \\ H^{2d - i}(X, \sigma _{\geq d - p - 1}\Omega ^\bullet ) \ar[u]_{b'} \\ H^{2d - i}(X, \sigma _{\geq d - p}\Omega ^\bullet ) \ar[u]_{c'} \\ H^{2d - i - 1}(X, \Omega ^{d - p - 1}[-d + p + 1]) \ar[u]_{d'} } \]

By induction and Lemma 50.20.1 we know that the pairings constructed above between the $k$-vectorspaces on the first, second, fourth, and fifth rows are perfect. By the $5$-lemma, in order to show that the pairing between the cohomology groups in the middle row is perfect, it suffices to show that the pairs $(a, a')$, $(b, b')$, $(c, c')$, and $(d, d')$ are compatible with the given pairings (see below).

Let us prove this for the pair $(c, c')$. Here we observe simply that we have a commutative diagram

\[ \xymatrix{ \text{Tot}(\sigma _{\leq p} \Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p} \Omega ^\bullet ) \ar[d]_{\gamma _ p} & \text{Tot}(\sigma _{\leq p + 1} \Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p} \Omega ^\bullet ) \ar[l] \ar[d] \\ \Omega ^\bullet & \text{Tot}(\sigma _{\leq p + 1} \Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p - 1} \Omega ^\bullet ) \ar[l]_-{\gamma _{p + 1}} } \]

Hence if we have $\alpha \in H^ i(X, \sigma _{\leq p + 1}\Omega ^\bullet )$ and $\beta \in H^{2d - i}(X, \sigma _{\geq d - p}\Omega ^\bullet )$ then we get $\gamma _ p(\alpha \cup c'(\beta )) = \gamma _{p + 1}(c(\alpha ) \cup \beta )$ by functoriality of the cup product.

Similarly for the pair $(b, b')$ we use the commutative diagram

\[ \xymatrix{ \text{Tot}(\sigma _{\leq p + 1} \Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p - 1} \Omega ^\bullet ) \ar[d]_{\gamma _{p + 1}} & \text{Tot}(\Omega ^{p + 1}[-p - 1] \otimes _{\underline{k}} \sigma _{\geq d - p - 1} \Omega ^\bullet ) \ar[l] \ar[d] \\ \Omega ^\bullet & \Omega ^{p + 1}[-p - 1] \otimes _{\underline{k}} \Omega ^{d - p - 1}[-d + p + 1] \ar[l]_-\wedge } \]

and argue in the same manner.

For the pair $(d, d')$ we use the commutative diagram

\[ \xymatrix{ \Omega ^{p + 1}[-p] \otimes _{\underline{k}} \Omega ^{d - p - 1}[-d + p] \ar[d] & \text{Tot}(\sigma _{\leq p}\Omega ^\bullet \otimes _{\underline{k}} \Omega ^{d - p - 1}[-d + p]) \ar[l] \ar[d] \\ \Omega ^\bullet & \text{Tot}(\sigma _{\leq p}\Omega ^\bullet \otimes _{\underline{k}} \sigma _{\geq d - p}\Omega ^\bullet ) \ar[l] } \]

and we look at cohomology classes in $H^ i(X, \sigma _{\leq p}\Omega ^\bullet )$ and $H^{2d - i}(X, \Omega ^{d - p - 1}[-d + p])$. Changing $i$ to $i - 1$ we get the result for the pair $(a, a')$ thereby finishing the proof that our pairings are perfect.

We omit the argument showing the uniqueness of $t$ up to precomposing by multiplication by a unit in $H^0(X, \mathcal{O}_ X)$. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 50.20: PoincarĂ© duality

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FW7. Beware of the difference between the letter 'O' and the digit '0'.