Lemma 15.102.2. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module. Let $N$ be an $A$-module annihilated by $I$. There exists an integer $n > 0$ such that $\text{Tor}^ A_ p(I^ nM, N) \to \text{Tor}^ A_ p(M, N)$ is zero for all $p \geq 0$.

Proof. By Lemma 15.101.7 we can factor $I^ nM \to M$ as $I^ nM \to M \otimes _ A^\mathbf {L} I \to M$. We claim the composition

$I^ nM \otimes _ A^\mathbf {L} N \to (M \otimes _ A^\mathbf {L} I) \otimes _ A^\mathbf {L} N \to M \otimes _ A^\mathbf {L} N$

is zero. Namely, the diagram

$\xymatrix{ (M \otimes _ A^\mathbf {L} I) \otimes _ A^\mathbf {L} N \ar[rr] \ar[rd] & & M \otimes _ A^\mathbf {L} (I \otimes _ A^\mathbf {L} N) \ar[ld] \\ & M \otimes _ A^\mathbf {L} N }$

commutes (details omitted) and the map $I \otimes _ A^\mathbf {L} N \to N$ is zero as $N$ is annihilated by $I$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).