Loading web-font TeX/Math/Italic

The Stacks project

Definition 57.3.2. Let k be a field. Let \mathcal{T} be a k-linear triangulated category such that \dim _ k \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) < \infty for all X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T}). We say a Serre functor exists if the equivalent conditions of Lemma 57.3.1 are satisfied. In this case a Serre functor is a k-linear equivalence S : \mathcal{T} \to \mathcal{T} endowed with k-linear isomorphisms c_{X, Y} : \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(X, Y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {T}(Y, S(X))^\vee functorial in X, Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T}).


Comments (0)

There are also:

  • 1 comment(s) on Section 57.3: Serre functors

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.